биомолекула.ру. Взгляд изнутри.
 

Логин:
Пароль:


Включать или не включать, вот в чем вопрос

[26 октября, 2013 г.]

Статья на конкурс «био/мол/текст»: Кристально чистая вода, свежий воздух, зеленые луга и леса — превосходное место для проживания человека. Нефтяные разливы, ядерный реактор ЧАЭС, кислотные озера — отличное место для обитания микроорганизмов. Причем они не просто терпеливо переносят столь суровые условия, они прекрасно живут в них и, главное, размножаются. И даже такие опасные для человека загрязнители окружающей среды, как полициклические ароматические углеводороды, служат для бактерий вполне обычным ростовым субстратом. Разгадка таких способностей кроется в генах. И об одном таком наборе генов — генов деградации нафталина — пойдет речь в этой статье.

Обратите внимание!

Эта статья представлена на конкурс научно-популярных работ «био/мол/текст»-2013 в номинации «Лучший обзор».


Спонсор конкурса — дальновидная компания Life Technologies. Спонсор приза зрительских симпатий — фирма Helicon.

Большие города

Многие технологические сферы загрязняют окружающую среду токсичными соединениями, а некоторые отрасли промышленности (производство резиновых изделий и кокса, газификация угля, нефтепереработка) являются источниками таких опасных соединений, как полициклические ароматические углеводороды (ПАУ). К ПАУ относят соединения, имеющие в своей химической структуре два и более конденсированных бензольных кольца. Многие ПАУ не только токсичны, но и могут провоцировать мутации, приводящие к появлению раковых опухолей, а также оказывать негативное воздействие на развитие плода в утробе матери.

Шестнадцать гомологов ПАУ в странах Евросоюза и США включены в список приоритетных загрязнителей окружающей среды. В России в настоящее время установлен контроль за содержанием нафталина, фенантрена, пирена и бензо(а)пирена в воздухе рабочей зоны и в водоемах. В почвах и грунтах предельно допустимая концентрация (ПДК) нормативно закреплена только для бензо(а)пирена (0,02 мг/кг). Всего известно более ста полициклических ароматических соединений, большинство из которых устойчиво в экосистеме в течение продолжительного времени. Так, период полураспада трехкольцевой молекулы фенантрена в почве может составлять от 16 до 126 дней, в то время как период полураспада пятикольцевого бензо(а)пирена — 229–1400 дней [1].

Разложение ПАУ в почве и в воде связано, в первую очередь, со способностью микроорганизмов, обитающих на загрязненных территориях, использовать эти соединения в качестве ростового субстрата [2].

Как происходит деградация ПАУ?

Первоначальной реакцией бактериальной деградации полициклических ароматических углеводородов является модификация группы заместителя, за которой следует расщепление ароматического кольца. В конечном счете, пути деградации ароматических соединений сводятся к нескольким ключевым реакциям и одним и тем же промежуточным продуктам. Одним из таких продуктов, в том числе и для нафталина, является салициловая кислота (рис. 1).

Рисунок 1. Салицилат — промежуточный продукт деградации многих ПАУ-соединений.

Сам же салицилат в дальнейшем окисляется двумя путями: во-первых, через катехол (посредством салицилат-1-монооксигеназы), во-вторых, через гентизиновую кислоту (при участии салицилат-5-гидроксилазы). В конечном счете, все сводится к промежуточным соединениям цикла Кребса (рис. 2).

Рисунок 2. Биохимические пути бактериальной деградации салицилата.

Рисунок 3. Нафталиновая плазмида NAH7. nahABCDEF — набор генов (оперон), кодирующих ферменты разложения нафталина до салицилата; nahGHINLJK — оперон, кодирующий ферменты разложения салицилата до элементов цикла Кребса; nahR — ген, кодирующий белок-регулятор этих двух оперонов; nahY — ген, кодирующий хеморецептор.

Нафталиновая плазмида NAH7 — грациозная модель.

Моделью для исследования механизма деградации нафталина через салициловую кислоту стала нафталиновая плазмида NAH7, выделенная из штамма Pseudomonas putida G7. Гены деградации нафталина и салицилата в этой плазмиде имеют структуру двух оперонов, то есть все гены, участвующие в разложении нафталина или салицилата, расположены вместе, друг за другом. При такой упаковке синтез ферментов в пределах одного оперона запускается одновременно, что позволяет микроорганизму при необходимости быстро активировать весь этот массив (рис. 3) [3]. Салицилат в данном случае является своего рода «контрольной точкой», разделяющей длинный путь на два сравнительно коротких участка. В связи с тем, что салицилат является общим звеном пути деградации многих соединений (о чем упоминалось выше), такое разделение на участки облегчает обмен «запчастями» одного пути: приобретение недостающих элементов или замену уже имеющихся на более эффективные.

Такой мобильный обмен генетической информацией становится возможным также благодаря мобильным генетическим элементам — транспозонам. Эти элементы, как правило, располагаются попарно по краям функциональных генов и при действии специального фермента — транспозазы — могут вырезаться из одного участка генома и встраиваться в другой.

Но вернемся к салицилату. Его роль «контрольной точки» — не единственная в плазмиде NAH7. Салицилат участвует в регуляции синтеза ферментов всего пути разложения нафталина до ЦТК.

Салицилат способен включать гены

У любого оперона есть два участка, участвующие в контроле синтеза белков с генов: оператор — участок связывания белка-регулятора с ДНК — и промотор — участок связывания РНК-полимеразы с ДНК. Взаимодействие этих двух элементов и определяет активность оперона. В плазмиде NAH7 имеется регуляторный белок, отвечающий за активность двух оперонов: деградации нафталина (nahABCDEF) и салицилата (nahGHINLJK). Ген, кодирующий этот белок, располагается рядом со вторым опероном (рис. 3). Регуляторный белок имеет две равновесные формы: неактивную (NahRi) и активную (NahRa). Когда салицилат в среде отсутствует, этот регуляторный белок неактивен (NahRi) и он не обладает сродством к ДНК. РНК-полимераза не присоединяется к промоторной области, потому что без активного белка-регулятора распознать эту область как место своей посадки она не может.

Когда в среде появляется салицилат, регуляторный белок активируется (NahRa), присоединяется к ДНК и помогает РНК-полимеразе закрепиться в промоторной области. Запускается транскрипция, и синтезируются ферменты, кодируемые оперонами. Процесс продолжается до тех пор, пока все молекулы загрязнителя не будут разрушены, и в среде не останется салицилата, активирующего белок-регулятор. Этот белок вновь перейдет в неактивную форму, РНК-полимераза перестанет распознавать место своей посадки, и наработка ферментов прекратится. Подобная схема позволяет нарабатывать фермент только в случае необходимости (рис. 4) [4].

Рисунок 4. Влияние салицилата на экспрессию nah-генов плазмиды NAH7.

Хемотаксис до субстрата доведет

Способность быстро обнаружить цель (молекулу загрязняющего вещества) и атаковать ее (деградировать эту молекулу) дает преимущества штамму-деструктору перед другими штаммами в условиях загрязненной окружающей среды. А некоторые микроорганизмы научились не просто распознавать наличие загрязнителя, но и осуществлять целенаправленный поиск ростового субстрата. Подобное явление называется хемотаксисом.

При наличии определенного белка — хеморецептора — бактериальная клетка приобретает способность чувствовать химический состав окружающей среды. В нафталиновой плазмиде NAH7 такой белок имеется и реагирует он, разумеется, на нафталин. Нафталин в таком случае называется хемоэффектором, или аттрактантом. Ген nahY, который кодирует нафталиновый хеморецептор, расположен рядом с оперонами деградации нафталина. Синтез белка-хеморецептора не зависит от наличия в среде загрязнителя, и, следовательно, этот рецептор нарабатывается в непрерывном режиме. Это значит, что на поверхности бактериальной клетки постоянно присутствуют «антенны», готовые в любую секунду уловить присутствие нафталина.

Еще одной необходимой в погоне за субстратом особенностью микроорганизма является жгутик. Это мотор, который в зависимости от обстоятельств может крутиться то против часовой стрелки, то по часовой стрелке, направляя бактериальную клетку в нужную сторону.

При попадании молекулы аттрактанта на белок-рецептор происходит аутофосфорилирование белка, связанного с хеморецептором (CheA), который, в свою очередь, фосфорилирует два последующих белка — CheB и CheY. Фосфорилированный CheY-P связан со жгутиком и способен переключать направление его вращения. Фосфорилированный CheB-P вместе с ферментом метилтрансферазой обеспечивает адаптацию к имеющейся концентрации субстрата и отключает аутофосфорилирование белка CheA, что приводит к прекращению подачи сигнала на жгутик (рис. 5а).

Вращение жгутика по/против часовой стрелки находится в, своего рода, равновесии. В отсутствии фосфорилированного белка CheY-P вращение жгутика балансирует между вращением в обоих направлениях. Фосфорилированный CheY-P связывается с компонентами комплекса переключения (белками FliM и FliN), сдвигая баланс в сторону вращения по часовой стрелке. Предположительно, в этом районе располагается около 34 сайтов связывания для белка CheY-P и, соответственно, чем больше белковых молекул CheY-P связано с комплексом, тем чаще жгутик поворачивается по часовой стрелке, что делает движение клетки более направленным (рис.5b). Как только прекращается поступление новых молекул субстрата на хеморецептор, белок CheY-P дефосфорилируется и перестает связываться с компонентами комплекса переключения. Вращение жгутика вновь балансирует между движением в прямом и обратном направлениях, и бактерия вновь начинает хаотично блуждать.

Рисунок 5. a — Реакция хеморецептора на наличие субстрата. Связывание молекулы субстрата с хеморецептором запускает каскад фосфорилирования белков, приводящий к b — переключению направления вращения жгутика. Связывание фосфорилированных белков с компонентами комплекса переключения приводит к сдвигу баланса в сторону вращения по часовой стрелке. Чем больше молекул субстрата связывается с хеморецептором, тем больше фосфорилированных белков связываются с компонентами комплекса переключения, что, в свою очередь, учащает вращение по часовой стрелке по сравнению с вращением против часовой стрелки [5].

Движение бактериальной клетки в однородной среде происходит по ломаной траектории; время одного «шага» составляет около одной секунды, а перерыв между шагами — около 0,1 секунды. Во время передвижения вперед жгутики остаются позади клетки. Во время пауз, вызванных вращением одного или нескольких жгутиков в противоположную вращению всего пучка сторону, происходит расплетание всего пучка, что дезориентирует всю клетку. В результате клетка беспорядочно блуждает в пространстве, что обеспечивает эффективный поиск субстрата, который может быть еще эффективнее за счет случайных неоднократных перемещений в одном направлении (обозначено зеленым пунктиром на рис. 6a).

Когда клетка приближается к местонахождению субстрата и начинает улавливать его молекулы, движение становится более направленным*. Хеморецептор, улавливая молекулы субстрата, запускает вращение жгутиков по часовой стрелке. Чем выше концентрация субстрата, тем чаще жгутики вращаются по часовой стрелке и, как следствие, клетка меньше переориентируется в пространстве, а значит — двигается в направлении повышения концентрации (рис. 6b). Эта стратегия перемещения клетки позволяет не останавливаться, когда в месте ее пребывания заканчивается субстрат. Она движется дальше — в поисках нового, богатого пищей, места. И, разумеется, находит его.

* — Что интересно, поисковое поведение совсем других организмов — насекомых — устроено во многом похоже (см. статью «Ускользающая нить» [6]). — Ред.

Рисунок 6. Стратегия бактериального хемотаксиса [7]. a — Перемещение в отсутствии градиента аттрактанта. Движение клетки в однородной среде более-менее хаотично. Вращение жгутика против часовой стрелки периодически сменяется вращением по часовой стрелке, что переориентирует бактериальную клетку в пространстве. Такое «блуждание» является частью эффективной стратегии поиска ростового субстрата. b — Хемотаксис в градиенте концентрации субстрата. Когда в среде появляется субстрат, вращение жгутика чаще происходит по часовой стрелке (и реже — против часовой), что придает движению бактериальной клетки направленность. Чем выше концентрация аттрактанта, тем активней к нему движется бактериальная клетка.

Подводя итог

Нафталиновая плазмида NAH7 — яркий пример того, как бактериальная клетка способна использовать имеющийся у нее потенциал: осуществлять направленный поиск субстрата, при нахождении субстрата включать синтез ферментов для его деградации, а не очень функциональные гены деградации заменять на нечто более эффективное. Поэтому даже в самых экстремальных условиях микроорганизмам удается приспосабливаться и использовать самые опасные (для человека) загрязнения в качестве источника углерода, а значит — и источника жизни.

Словарик


  • Оперон — функциональная единица генома прокариот, в состав которой входят гены (единицы транскрипции), кодирующие совместно или последовательно работающие белки и объединенные под одним (или несколькими) промоторами;
  • Промотор — последовательность нуклеотидов ДНК, узнаваемая РНК-полимеразой как стартовая площадка для начала транскрипции;
  • Плазмида — внехромосомный самовоспроизводящийся генетический элемент (фактор наследственности) бактерий и некоторых других организмов. Представляет собой кольцевую двуцепочечную молекулу ДНК, закрученную в суперспираль;
  • Транспозон — последовательность ДНК, способная перемещаться внутри генома;
  • Цикл Кребса (цикл лимонной кислоты или цикл трикарбоновых кислот) — центральная часть общего пути катаболизма, циклический биохимический аэробный процесс, в ходе которого происходит превращение двух- и трёхуглеродных соединений, образующихся как промежуточные продукты в живых организмах при распаде углеводов, жиров и белков, до CO2;
  • Хеморецептор — рецептор, чувствительный к воздействию химических веществ. Представляет собой белковый комплекс, который, взаимодействуя с определенным веществом, изменяет свои свойства, что вызывает каскад внутренних реакций организма;
  • Экспрессия генов — это процесс преобразования наследственной информации от гена (последовательности нуклеотидов ДНК) в функциональный продукт — РНК или белок;
  • Фосфорилирование — процесс переноса остатка фосфорной кислоты от фосфорилирующего агента к субстрату. Фосфорилирование или дефосфорилирование того или иного белка часто регулирует его функциональную активность (усиливает ее или, наоборот, «выключает» белок);
  • Аутофосфорилирование — способность некоторых рецепторов фосфорилировать самих себя. Активированный рецептор фосфорилирует различные белки-мишени, что приводит к изменениям мембранного транспорта, транскрипции генов и других клеточных процессов.

Литература


  1. Peng R.H., Xiong A.S., Xue Y., Fu X.Y., Gao F., Zhao W., Tian Y.S., Yao Q.H. (2008). Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol. Rev. 32, 927–955;
  2. биомолекула: «Бактерии-нефтедеструкторы для биоремедиации супесчаных почв Воронежской области»;
  3. You I.S., Ghosal D., Gunsalus I.C. (1988). Nucleotide Sequence of Plasmid NAH7 Gene nahR and DNA Binding of the nahR Product. J. Bacteriol. 170, 5409–5415;
  4. Park W., Padmanabhan P., Padmanabhan S., Zylstra G.J., Madsen E.L. (2002). nahR, encoding a LysR-type transcriptional regulator, is highly conserved among naphthalene-degrading bacteria isolated from a coal tar waste-contaminated site and in extracted community DNA. Microbiology 148, 2319–2329;
  5. Porter S.L., Wadhams G.H., Armitage J.P. (2011). Signal processing in complex chemotaxis pathways. Nat. Rev. Microbiol. 9, 165;
  6. биомолекула: «Ускользающая нить»;
  7. Sourjik V., Wingreen N.S. (2012). Responding to Chemical Gradients: Bacterial Chemotaxis. Curr. Opin. Cell. Biol. 24, 262–268.

Автор: Филатова Ирина.

Число просмотров: 454.

Creative Commons License — условия использования и распространения материалов сайта.
Вернуться в раздел «Клетка»

Комментарии

(Оставить комментарий) (показывать сначала старые комментарии)

Яндекс.Метрика

© 2007–2015 «биомолекула.ру»
Электропочта: info@biomolecula.ru
О проекте · RSS · Сослаться на нас

Дизайн и программирование —
Batch2k15.

Сопровождение сайта — НТК «Биотекст».

Условия использования сайта
Об ошибках сообщайте вебмастеру.