биомолекула.ру. Взгляд изнутри.
 

Логин:
Пароль:


Катится, катится к ДНК гистон

[22 апреля, 2014 г.]

Каждый раз, когда клетки делятся митозом или мейозом, их ДНК расплетается и удваивается, умудряясь при этом сохранять свою структуру и целостность. Ювелирная упаковка ДНК (обеспечиваемая гистонами) жизненно важна, ведь именно от неё зависит, какие гены будут считываться и работать в той или иной клетке. Подробности того, как ДНК удаётся упаковаться каждый раз правильным образом и как происходит транспортировка нужных гистонов к месту сборки, выясняла команда биологов из Биотехнологического центра исследований и инноваций Университета Северной Дании и Университета Копенгагена. Эта работа вошла в кандидатскую диссертацию Илназ Климовской, сейчас — менеджера медицинских и научных проектов в «Новартис Фарма» в Москве. Результаты исследования опубликованы в журнале Nature Communications.

Эта работа публикуется в рамках конкурса научно-популярных статей, проведенного на конференции «Биология — наука 21 века» в 2014 году.
О первом рождении мира гипотезам несть конца:
Началом начал полагают кто Взрыв, кто — Слово...
А наша-то с вами жизнь началась с яйца,
С зиготы, начнём, как Гораций писал, «ab ovo».
А в этой зиготе запрятан один геном.
Так как же так вышло, что клетки столь разной масти
Живущие в почках и в коже, в мозгу спинном
Возникли посредством деленья её на части?
Здесь эпигенетика может помочь отыскать ответ:
Письмом древних инков намотана на гистоны
Вся нить ДНК, гены — будто узлы на ней,
Причина в том разночтений транскрипционных.
И в этом для клеток содержится знак судьбы,
Решенье — меняться ль, стабильность свою поддержать ли,
Кем стать: миоцитом, секреторной клеткой быть,
Нейроном — сомкнуть своих синапсов рукопожатья?
Гистоны*, как поезд, подвозит белок Asf1.
Движенье его контролируется ферментом...
Читайте: мы ниже всю эту картину полней дадим,
Расскажем подробнее об интересных моментах.
* — Речь идёт о гистонах Н3-Н4

Разные, как две капли воды

Известно, что все клетки многоклеточного организма имеют одинаковый геном. Впрочем, данное утверждение не совсем точно — столь длинный код не может триллионократно копироваться без единой ошибки, чтобы все копии были абсолютно идентичны, но большинство «опечаток» всё же остаются незамеченными из-за избыточности генетического кода. Одно «слово» — код одной аминокислоты, или триплет, — может быть заменено другим, синонимичным ему, и такого рода «опечатка» не приведёт к смысловой замене в кодируемом белке.

Выходит, сотни и тысячи типов клеток, различающихся в зависимости от местоположения и функции, развиваются из одной и той же зиготы. Значит, один набор хромосом формирует и округлый со вмятинкой посередине безъядерный эритроцит, и многоядерную веретенообразную клетку поперечнополосатой мышечной ткани, и тянущие друг к другу руки отростков нейроны, и секреторную клетку поджелудочной железы, и все остальные клетки, в которых производятся специфические, только им необходимые белки и проходят такие разные химические реакции?

Клетки, на которые поделится зигота, несмотря на свою видимую идентичность, имеют огромный потенциал вариабельности. Так и две капли воды, кажущиеся абсолютно одинаковыми, могут иметь совершенно разный состав примесей, разное микробное «население» и ещё множество недоступных невооружённому глазу отличий. Но если с каплями всё понятно (они могут быть неразличимы на вид, но взяты из разных водоёмов или содержать разные добавки), то оплодотворённая яйцеклетка одна, и никто не добавляет вещества в поделившиеся клетки извне. Как же так получается? Если геном одинаков, а клетки все разные, — здесь явно задействованы какие-то механизмы, не связанные с последовательностью нуклеотидов в цепочке. Такие изменения иногда называют «надгеномными». Они происходят в течение жизни организма и могут передаваться потомству, хотя не влияют на последовательность ДНК (см. «Рыбки Danio rerio наследуют модификации ДНК от отца» [3]). Изучением таких изменений занимается наука эпигенетика, рассказывающая про три основных способа надгеномного регулирования:


  1. Метилирование ДНК (добавление к некоторым участкам метильной группы — СН3);
  2. Некодирующие РНК (не содержат информации о белке, но выступают в роли регуляторов, способных «включать» и «выключать» гены и контролировать мобильные элементы генома) [4];
  3. Модификация гистонов (этот путь предоставляет большие возможности для воплощения самых разнообразных фантазий природы: есть широкий спектр меток, которые можно присоединять к гистонам, чтобы управлять их работой и влиять таким образом на активность генов).

Рисунок 1. Клетки одного и того же организма — самые непохожие близнецы, хотя и являются, по сути, копиями. Рисунок автора.

Рисунок 2. Узелковое письмо кипу.

Драгоценное кружево и узелковое письмо: зачем и как ДНК упаковывают в хроматин

Если бы мы смогли посмотреть на молекулу ДНК, мы увидели бы, что она похожа на очень длинную (примерно 1 метр — а ведь она умещается в клеточном ядре!) тонкую нить, плавающую, на первый взгляд, спутанным, но на деле — организованным комком в ядре клетки. Но простота такой модели обманчива (потому что в действительности всё намного интереснее) — перед тем, как клетка делится, нить упаковывается ещё плотнее, определённым образом «наматываясь на катушку», состоящую из белков-гистонов, образуя нуклеосому (структурную единицу хроматина).

Зачем вообще образуется хроматин? Во-первых, упаковка ДНК в организованную структуру даёт широкий простор для регуляции считывания информации, заложенной в ней. Какие-то участки можно оставить более открытыми, какие-то — более закрытыми, влияя тем самым на то, какая информация будет считываться. Во-вторых, нить в развёрнутом виде длинная, тонкая, может легко запутаться, порваться, а повреждение её чревато серьёзными последствиями (вплоть до гибели клетки). Нить ДНК уязвима для веществ, растворённых в цитоплазме клетки (туда она попадает после того, как в процессе деления защитный «сейф» ядерной оболочки, где клетка хранит своё главное богатство, растворяется), её запросто может без всякого злого умысла покромсать на кусочки какой-нибудь фермент. Оставить тонкую нить ДНК без защиты никак нельзя.

Вот представьте: вы купили в магазине большой моток дорогого прелестного и невероятно тонкого кружева ручной работы. Что будет, если вы его в размотанном виде начнёте протаскивать его сквозь терновые заросли? Правильно, оно порвётся в клочки. Но если его красиво, аккуратно и компактно упаковать, этого не произойдёт. Наша ДНК — творение куда более сложное, ценное, прекрасное и, не побоюсь этого слова, грандиозное, потому что ещё и несет на себе важное послание — нуклеотидный текст, ошибки в котором могут стать причиной серьёзных заболеваний, в том числе онкологических. Поэтому эволюция позаботилась о создании эффективного механизма упаковки такого бесценного сокровища — это и есть хроматин, о котором говорилось выше.

В генах нити ДНК, как в узелковом письме инков (кипу), записаны инструкции по сборке белков из аминокислот. От плотности «обмотки» вокруг гистонов зависит, какие гены будут «видны» транскрипционным факторам (ТФ) [5], прочитаны ими, и, следовательно, какие гены будут работать. Когда клетки делятся самым распространённым — митотическим — способом, внутри родительской клетки удваиваются и затем делятся между двумя дочерними все их составные компоненты, в том числе и ДНК. Для упаковки удвоенного количества ДНК в хроматин клетке нужно в два раза больше гистонов, этих строительных блоков, создающих каркас архитектуры хроматина.

Производство гистонов и производство ДНК в клетке чётко скоординированы. Эти два процесса похожи на циркачей, выполняющих совершенно синхронные трюки. Гистоны не возникают в нужное время и в нужном месте сами собой. Они производятся в цитоплазме клетки, поэтому им надо ещё как-то добраться до ядра, где спрятана клеточная ДНК. Транспортирует эти «кирпичики» на стройку специальный белок Asf1. Он относится к классу шаперонов — вспомогательных белков, которые отвечают за целостность и эффективность различных белков-партнёров. Именно Asf1 занимается высокоточной доставкой гистонов — то есть, является поставщиком строительного материала к месту возведения очередного шедевра природной архитектуры — хроматина.

Эй, прибавь-ка ходу, машинист!

Asf1, который занимается перевозкой димера (объединения из двух молекул) гистонов H3—H4, может фосфорилироваться (присоединять остаток фосфорной кислоты) ферментом TLK1 (tousled-like kinase). Исследователи нашли сайты фосфорилирования — «крючочки», куда фермент может «повесить» фосфатную группу. С помощью метода масс-спектрометрии их нанесли на карту, показав, что фосфорилирование происходит во многих точках «хвостика» молекулы, содержащего сериновые и треониновые аминокислотные остатки. TLK1 особенно активен в тот промежуток времени, когда удваивается ДНК и синтезируются гистоны, — в S-фазе интерфазы (синтетического периода в промежутке между клеточными делениями), — затем его количество в клетке уменьшается. Фосфорилируя белок Asf1, TLK1 превращает его в высокоскоростной и сверхточный товарный поезд, обеспечивающий немедленную доставку «строительных материалов» к месту удвоения ДНК и сборки хроматина. Таким образом, учёные вышли на новый уровень понимания того, как регулируется развитие клеток. Верные и стоящие на своём месте гистоны определяют судьбу клетки: правильно ли она делает, если хочет стать непохожей на других? Стимулирует ли она рост и развитие организма, или встала на кривую дорожку, которая приведёт к онкологическому заболеванию?

Рисунок 3. TLK-1 (как и другие человеческие TLK) активен в синтетическом периоде интерфазы и подавляется действием репликативного стресса (нарушения правильного удвоения ДНК, что как раз и приводит к повреждению молекулы и может стать причиной онкологических заболеваний). Возможно, фосфорилирование Asf1 играет ключевую роль в транспортировке гистонов и сборке хроматина как во время нормального течения S-фазы (синтетического периода интерфазы), так и в ответ на репликативный стресс. Отсюда — надежды исследователей найти способ воздействия на раковые клетки, чтобы снизить их устойчивость к лечению. CAF-1 (chromatin assembly factor 1) и HIRA — ещё два из множества гистоновых шаперонов, участвующих в сборке хроматина.

В дальнейшем команда исследователей собирается глубже вникнуть в процесс дупликации хроматина и найти методы воздействия на деление и развитие опухолевых клеток с помощью TLK1 (например, нарушить поставки к ним гистонов при удвоении ДНК), постаравшись сделать раковые клетки менее устойчивыми.

Словарик терминов


  • Гистоны — обширный класс ядерных белков, выполняющих две основные функции: они участвуют в упаковке нитей ДНК в ядре и в эпигенетической регуляции таких ядерных процессов, как транскрипция, репликация и репарация. Существует пять различных типов гистонов H1/Н5, H2A, H2B, H3, H4. Гистоны H2A, H2B, H3, H4, называемых кóровыми гистонами (от англ. core — сердцевина), формируют нуклеосому, представляющую собой белковую глобулу, вокруг которой накручена нить ДНК. Гистон H1/H5, называемый линкерным гистоном (от англ. link — связь), связывается с внешней стороной нуклеосомы, фиксируя на ней нить ДНК.
  • Ки́пу (кечуа khipu -> исп. quipu — «узел», «завязывать узлы», «счёт»; аймара chino — чино) — древняя мнемоническая и счётная система инков и их предшественников в Андах, своеобразная письменность: представляет собой сложные верёвочные сплетения и узелки, изготовленные из шерсти южноамериканских верблюдовых (альпаки и ламы) либо из хлопка.
  • Некодирующие РНК (non-coding RNA, ncRNA) — это молекулы РНК, которые не транслируются в белки. Ранее использовавшийся синоним, малые РНК (smRNA, small RNA), в настоящее время не используется, так как некоторые некодирующие РНК могут быть очень большими, например, Xist. Последовательность ДНК, на которой транскрибируются некодирующие РНК, часто называют РНК-геном.
  • Нуклеосома — это структурная часть хроматина, образованная совместной упаковкой нити ДНК с гистоновыми белками H2А, H2B, H3 и H4. Последовательность нуклеосом, соединенная гистоновым белком H1, формирует нуклеофиламент (нуклеосомную нить).
  • Фосфорилирование — процесс переноса остатка фосфорной кислоты от фосфорилирующего агента-донора к субстрату, как правило, катализируемый ферментами и ведущий к образованию эфиров фосфорной кислоты.
  • Хроматин (греч.χρωματα — цвета, краски) —вещество хромосом — это комплекс ДНК, РНК и белков. Хроматин находится внутри ядра клеток эукариот и входит в состав нуклеоида у прокариот. Именно в составе хроматина происходит реализация генетической информации, а также репликация и репарация ДНК.
  • Шаперо́ны (англ. chaperones) — класс белков, главная функция которых состоит в восстановлении правильной нативной третичной или четвертичной структуры белков, а также образование и диссоциация белковых комплексов.
  • Эпигенетика (греч.επι — над, выше, внешний) — изучение изменения экспрессии генов или фенотипа клетки, вызванных механизмами, не затрагивающими последовательности ДНК. Эпигенетические изменения сохраняются в ряде клеточных митотических делений, а также могут передаваться следующим поколениям при мейозе. Примерами эпигенетических изменений являются метилирование ДНК и деацетилирование гистонов, оба процесса приводят к подавлению экспрессии генов.

Статья написана на основе пресс-релиза [1] и оригинальной публикации [2].

Литература


  1. Пресс-релиз университета Копенгагена: «Enzyme controls transport of genomic building blocks»;
  2. Klimovskaia I.M., Young C., Strømme C.B., Menard P., Jasencakova Z., Mejlvang J., Ask K., Ploug M., Nielsen M.L., Jensen O.N., Groth A. (2014). Tousled-like kinases phosphorylate Asf1 to promote histone supply during DNA replication. Nat. Commun. 5, 3394;
  3. Элементы: «Рыбки Danio rerio наследуют модификации ДНК от отца»
  4. биомолекула: «Обо всех РНК на свете, больших и малых»;
  5. биомолекула: «Таинственный код нашего генома».

Автор: Мищенко Екатерина.

Число просмотров: 1163.

Вернуться в раздел «Новости»

Комментарии

(Оставить комментарий) (показывать сначала старые комментарии)

Яндекс.Метрика

© 2007–2015 «биомолекула.ру»
Электропочта: info@biomolecula.ru
О проекте · RSS · Сослаться на нас

Дизайн и программирование —
Batch2k15.

Сопровождение сайта — НТК «Биотекст».

Условия использования сайта
Об ошибках сообщайте вебмастеру.