От сложного к простому: трудности симбиогенеза
17 мая 2016
От сложного к простому: трудности симбиогенеза
- 7020
- 1
- 9
-
Автор
-
Редакторы
Митохондрии — верные спутники эукариот. Согласно теории симбиогенеза, именно обретение митохондрий спровоцировало формирование ядерных организмов. Одним из доказательств этой теории было обнаружение митохондрий или подобных им органелл у всех, даже самых простых, эукариот. Но в мае 2016 года коллектив чешских ученых описал первый в истории ядерный организм, не содержащий даже косвенных признаков митохондрий. Может ли это открытие пошатнуть современные представления о ранней эволюции эукариот?
Митохондрии — двумембранные органеллы, снабжающие энергией клетки практически всех эукариот. Достоверно известно, что они родственны α-протеобактериям и стали частью эукариотических клеток около 1,5 млрд лет назад [1]. О бактериальном происхождение митохондрий свидетельствует наличие двух мембран (внутренней собственной и внешней хозяйской), собственных кольцевой ДНК и трансляционной машины, а также способности независимо делиться. Некоторые даже полагают, что апоптоз — попытка митохондрии убить поглотившего ее эксплуататора.
Тем не менее в научном сообществе до сих пор нет единого мнения относительно роли этого симбиоза в развитии эукариот (рис. 1). Сторонники теории симбиогенеза утверждают, что слияние некой археи с предком митохондрий (бактерией) запустило цепочку событий, приведших к образованию эукариот современного типа. Приверженцы архезойной теории (гипотезы), наоборот, считают, что «приручить» митохондрию мог только уже оформившийся ядерный организм — архезой [2].
Благодаря Карлу Вёзе и Джорджу Фоксу, в 70-х годах прошлого века сравнившим гены 16S рРНК множества живых существ, долго обманывавшие микробиологов своим визуальным сходством две формы доядерных организмов (прокариот) развели окончательно и бесповоротно, да еще и на высшем уровне: эубактерий лишили права на «истинность» (—эу), архебактерий — права носить гордое имя бактерий, зато в новой системе живых организмов им отвели по собственному домену (таксону высшего ранга): «Эволюция между молотом и наковальней, или как микробиология спасла эволюцию от поглощения молекулярной биологией» [3] и «Карл Вёзе (1928–2012)» [4]. Так в 1990 году человеку предложили осознать, что все живые существа филогенетически разбиваются на три домена: Бактерии, Археи и Эукариоты, — причем бактерии отличаются от архей даже больше, чем археи от эукариот, а недавно вообще чуть ли не усомнились в целесообразности разделения последних: «Нашли предков всех эукариот» [5]. Однако предложение почти тридцатилетней давности до сих пор не нашло понимания у многих авторов отечественных учебников биологии. А что? Вдруг опять эти ученые всё поменяют, а им переписывать каждые -цать лет учебники что-ли? — Ред.
В 1928 году знаменитый биолог рубежа XIX-XX веков Эдмунд Вилсон высказался о гипотезе бактериального происхождения митохондрий так: «Подобные идеи чересчур фантастичны, чтобы их можно было обсуждать в приличном биологическом обществе» [6]. Сегодня же подобное отношение сформировалось к архезойной теории, а ключевая роль митохондрий в ранней эволюции эукариот общепризнанна. Открытие первого истинно безмитохондриального простейшего заставляет еще раз задуматься о сильных и слабых сторонах каждой из теорий.
Теория симбиогенеза
Основным доказательством того, что митохондрии — триггер эволюции эукариот, является их вездесущность. Даже у анаэробных эукариот в клетках остаются следы митохондрий (рис. 2). Например, у паразитического простейшего Entamoeba histolytica митохондрии деградировали до митосом, лишенных ДНК или белков дыхательной цепи [7]. Тем не менее в митосомах транспорт белков идет по типично митохондриальному механизму, а ядерный геном E. histolytica кодирует типично митохондриальные гены. На сегодня известно более 1000 эукариот, не содержащих митохондрий, и все они произошли от более развитых форм, обладающих митохондриями [8].
Одно из преимуществ симбиогенетической теории по сравнению с архезойной в том, что она объясняет возникновение ядра и интронную структуру генома. У прокариот широко распространен горизонтальный перенос генов (ГПГ), за счет которого популяции могут быстро обмениваться частями генофонда [9]. ГПГ способствует незащищенности генома — ведь поступающая ДНК в этом случае ничем не отделена от содержимого хозяйской клетки.
Вполне вероятные попытки клетки-хозяина разрушить пока еще не одомашненного симбионта приводили к высвобождению в цитоплазму симбиотической ДНК. Эта ДНК, будучи в непосредственной близости от хозяйского генома, могла легко в него встраиваться [10]. Из-за ГПГ даже в эукариотах, утративших митохондрии, находят изначально митохондриальные гены.
Такое слияние геномов могло, во-первых, способствовать развитию взаимозависимости симбионта и хозяина. Во-вторых, обильный ГПГ мог переносить не только гены, обеспечившие переплетение метаболизма двух организмов, но и эгоистичные ретроэлементы [11]. Вторжение интронов II группы, вырвавшихся из α-протеобактерий, привело к разрыхлению исходно очень плотного генома хозяина: до 80% хозяйской ДНК теперь были интронами [12], [13]. В такой сложной ситуации клетка-хозяин развила несколько линий защиты своего генома от шквала интронов: возникли система внутренних мембран и ядро, убиквитиновая система деградации поврежденных белков, нонсенс-опосредованный распад РНК и прочие характерные особенности эукариот (рис. 3).
Еще одно мощное доказательство симбиогенеза — энергетические потребности эукариот. Хотя энергопотребление про- и эукариот в пересчете на грамм веса примерно одинаково, ядерные клетки гораздо крупнее безъядерных, из-за чего они потребляют примерно в 5000 раз больше энергии (2300 пВт/кл против 0,5 пВт/кл). При пересчете энергопотребления на средний ген одноклеточного организма оказывается, что эукариотический ген потребляет в 1000 раз больше энергии [8] . Без митохондриальной энергетики было бы невозможно не только создать сложные, большие и активно передвигающиеся организмы, но даже обеспечить функционирование типичных для эукариот клеточных структур.
У гигантских бактерий масштабирование прокариотической энергетики за счет массовой полиплоидизации (как в случае Epulopiscium, дорастающей до 0,6 мм и содержащей 200 000 копий генома размером 3,8 млн п.н. [14]) не приводит к повышению выхода энергии на ген, и клетка остается типично бактериальной [8]. — Авт.
Еще один важный факт, подкрепляющий симбиогенетический сценарий — существование внутриклеточных симбионтов бактерий. Случаи эндосимбиоза у бактерий крайне редки в природе, но всё же они есть и демонстрируют, как мог зарождаться эукариотический домен жизни [15].
Архезойная теория
Архезои — предполагаемые безмитохондриальные, но ядерные предки современных эукариот. Согласно архезойному сценарию митохондрии были одомашнены только на поздних стадиях эволюции эукариот и не оказали на этот процесс значительного влияния.
Одно из основных положений симбиогенеза — гипотеза исходной простоты. О жизни во времена протерозоя известно крайне мало, поэтому о ее устройстве существует множество часто взаимоисключающих предположений. Если по первой гипотезе считается, что от прокариот с очень компактными геномами произошли более сложные эукариоты, то в архезойном сценарии изначально существовали клетки с запутанными и громоздкими геномами, от которых путем редукции произошли более простые прокариоты. Эукариоты же лишь сохранили первичную сложность.
Эволюция геномов и правда далеко не всегда движется от простого к сложному. И среди эукариот есть примеры, подтверждающие это.
Типичный эукариотический геном содержит множество интронов, прерывающих кодирующую часть генов, ретроэлементов и некодирующих повторов, а также протяженные межгенные участки, которым одни приписывают важные регуляторные функции, а другие, не церемонясь, называют «мусорной ДНК». В итоге характерная для эукариот плотность генов — 0,012 гена/т.п.н.; у прокариот же геномы гораздо компактней — 1 ген/т.п.н. [16]. У ряда паразитических простейших плотность генов приближается к прокариотической, но такая компактизация у них всегда сопровождается и потерей тысяч генов их свободноживущих предков. В результате геномы паразитических протист обычно содержат меньше 10 000 генов.
Тем не менее редукция генома совсем не обязательно сопровождает его компактизацию. Доказательства этого можно найти как у простейших, так и у многоклеточных форм жизни.
Например, свободноживущая инфузория Paramecium tetraurelia содержит 30000 генов, на каждый из которых приходится в среднем 2 т.п.н. Такая компактность достигается за счет сокращения размера интронов до предельных 25 п.н. и уменьшения межгенных расстояний [17].
У Caenorhabditis elegans плотность генов достигает 0,2 гена/т.п.н. [18], причем 15% генов этого червя организованы в опероны, как у бактерий [19].
Даже у позвоночных могут быть необычно компактные геномы: геном рыбы фугу в восемь раз меньше человеческого в основном за счет низкого содержания повторов (рис. 4) [20].
Приведенные примеры показывают, что простота прокариотических геномов может возникать вторично. Если это так, то LUCA — последний общий предок всех современных организмов — мог обладать геномом эукариотического типа.
Гипотезу исходной сложности также подтверждают так называемые гены-сигнатуры («подписи») — эукариотические гены, не имеющие прокариотических гомологов. Вероятнее всего, эти гены содержались в LUCA, но были утеряны бактериями и археями.
К несчастью архезойной теории, список сигнатур значительно поредел с начала XXI века. Среди множества секвенированных с тех пор геномов были найдены их прокариотические гомологи. [21] Таким образом, с каждым годом становится всё больше белков, чье присутствие у эукариот можно объяснить тем, что их гены были принесены архейным либо бактериальным предком в ходе симбиогенеза.
И в то же время открытие прокариотических гомологов белков клеточного движения (актинов, тубулинов и кинезинов) косвенно подтверждает возможность того, что архезои могли активно передвигаться и даже быть первыми хищниками на Земле, способными к фагоцитозу [22]. Возникновение хищников в автотрофно-сапротрофном сообществе колыбели жизни должно было оказать колоссальное влияние на ход эволюции. В самых захватывающих сценариях одни жертвы архезоя приспосабливаются к быстрому делению и росту, а другие — к нишам, куда архезой не способен проникнуть. В итоге гипотетический архезой повел эволюцию своих современников по редуктивному пути с упором на гибкость метаболизма и скорость деления, в ходе чего сформировались известные нам прокариоты (рис. 5) [23].
Но несмотря на то, что архезойная теория имеет некоторые сильные стороны или как минимум наносит колкие удары в сторону симбиогенеза, ей не хватает главного — она не объясняет, как и почему сформировалось ядро.
Уникальная находка
В 1980-х существовало множество претендентов на звание современного архезоя, но в последующие годы у всех них нашли митохондриеподобные органеллы (митосомы и пероксисомы) и гены-маркеры митохондриального прошлого: гены сборки Fe-S-белков, митохондриальных транспортеров и шаперонов, синтетазы кардиолипина. К тому же некоторые белки, синтезируемые в цитоплазме, обладают последовательностями импорта в митохондрии, которые могут сохраняться и в отсутствие самих митохондрий.
С каждым новым «закрытием» потенциального архезоя безмитохондриальный сценарий становления эукариот оказывался всё менее вероятным. И вот в мае 2016 года наконец-то появился новый потенциальный архезой, не содержащий даже следов митохондрий [24].
Речь идет об анаэробной оксимонаде Monocercomonoides sp. PA203, живущей в кишечнике насекомых. Оксимонады лишены митохондрий и не содержат в ядерной ДНК гены митохондриального происхождения. Энергию они получают из гликолиза, идущего в цитоплазме.
Геном Monocercomonoides sp., расшифрованный коллективом чешских ученых, содержит 16629 генов, среди которых нет названных выше маркеров. Поиски митохондриальных гомологов и белков с импортными последовательностями тоже не дали удовлетворительных результатов (рис. 6).
Единственное, что удалось найти — два гена, продукты которых у близкого родственника Monocercomonoides sp. могут содержаться (а могут и не содержаться) в митохондриях, при этом они лишены импортных последовательностей.
Авторы открытия считают, что Monocercomonoides когда-то всё же содержали митохондрии, поскольку у близкородственных родов есть следы митохондрий. Еще остается возможность, что у этих простейших есть пока не обнаруженные митосомы, деградировавшие настолько, что в геноме не осталось каких-либо признаков их присутствия.
Так или иначе, Monocercomonoides sp. — пока уникальный случай истинно безмитохондриального протиста за всю историю биологии. И этот случай доказывает, что эукариоты могут жить не только без митохондрий, но и без их генетического наследства .
В какой последовательности предки эукариот разживались внутриклеточным скарбом и что стало счастливым билетом в эволюционное будущее, можно узнать из статьи «Генеалогия белков свидетельствует о позднем приобретении митохондрий предками эукариот» [25]. — Ред.
Это открытие, конечно, не наносит сокрушительного удара по теории симбиогенеза, но однозначно заставляет задуматься, что есть необходимость и что есть излишество в эукариотах.
Литература
- Как появились митохондрии (рассказ, похожий на сказку);
- Кунин Е.В. Логика случая. М.: Центрполиграф, 2014. — 527 с.;
- Эволюция между молотом и наковальней, или Как микробиология спасла эволюцию от поглощения молекулярной биологией;
- Карл Вёзе (1928–2012);
- Кондратенко Ю. (2015). «Нашли предков всех эукариот». «Кот Шрёдингера». 6;
- van der Giezen M. (2009). Hydrogenosomes and mitosomes: conservation and evolution of functions. J. Eukaryot. Microbiol. 56, 221–231;
- Tovar J., Fischer A., Clark C.G. (1999). The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica. Mol. Microbiol. 32, 1013–1021;
- Lane N. (2011). Energetics and genetics across the prokaryote-eukaryote divide. Biol. Direct. 6, 35;
- Закинули археи эволюционный невод и вытянули...;
- Как составлялся геном эукариот: эндосимбиоз VS. непрерывный горизонтальный перенос;
- Rogozin I.B., Carmel L., Csuros M., Koonin E.V. (2012). Origin and evolution of spliceosomal introns. Biol. Direct. 7, 11;
- Koonin E.V. (2009). Intron-dominated genomes of early ancestors of eukaryotes. J. Hered. 100, 618–623;
- Сколько сора в нашей ДНК;
- Тысячекратная полиплоидия гигантской бактерии Epulopiscium;
- von Dohlen C.D., Kohler S., Alsop S.T., McManus W.R. (2001). Mealybug beta-proteobacterial endosymbionts contain gamma-proteobacterial symbionts. Nature. 412, 433–436;
- Lane N. and Martin W. (2010). The energetics of genome complexity. Nature. 467, 929–934;
- Zagulski M., Nowak J.K., Le Mouël A., Nowacki M., Migdalski A., Gromadka R. et al. (2004). High coding density on the largest Paramecium tetraurelia somatic chromosome. Curr. Biol. 14, 1397–1404;
- Hillier L.W., Coulson A., Murray J.I., Bao Z., Sulston J.E., Waterston R.H. (2005). Genomics in C. elegans: so many genes, such a little worm. Genome Res. 15, 1651–1660;
- Blumenthal T., Davis P., Garrido-Lecca A. (2015). Operon and non-operon gene clusters in the C. elegans genome. WormBook. 28, 1–20;
- Aparicio S., Chapman J., Stupka E., Putnam N., Chia J.-M., Dehal P. et al. (2002). Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science. 297, 1301–1310;
- Koonin E.V. (2010). The origin and early evolution of eukaryotes in the light of phylogenomics. Genome Biol. 11, 209;
- Mayer F. (2003). Cytoskeletons in prokaryotes. Cell Biol. Int. 27, 429–438;
- Kurland C.G., Collins L.J., Penny D. (2006). Genomics and the irreducible nature of eukaryote cells. Science. 312, 1011–1014;
- Karnkowska A., Vacek V., Zubáčová Z., Treitli S.C., Petrželková R., Eme L. et al. (2016). A eukaryote without a mitochondrial organelle. Curr. Biol. 10, 1274–1284;
- Элементы: «Генеалогия белков свидетельствует о позднем приобретении митохондрий предками эукариот».