биомолекула.ру. Взгляд изнутри.
 

Логин:
Пароль:


Мечтают ли батоиды об электрокрысах?

[3 августа, 2016 г.]

Современные биороботы создаются по образу и подобию — нет, не своих творцов-изобретателей, а животных. Вдохновившись природным «дизайном», ученые разрабатывают причудливые механизмы, копирующие походку гепарда или саламандры, движения змей и медуз. Недавно в Science вышла статья о мягком киборге — копии ската (надотряд Batoidea). Что за этим стоит — игры разума, праздно блуждающего в дебрях фундаментальной науки, или технологический прорыв будущего?

Ученые из Гарварда, Стэнфорда и Университета Соган (Южная Корея) создали ската-биоробота, каждый плавник которого приводится в движение независимым лучом света в теплом царстве питательной среды (см. видео) [1, 2]. Гибридное создание пока в 10 раз меньше оригинала, но умеет следовать за специальной световой указкой не хуже вашего кота, обходя препятствия и изгибая крылья-плавники почти как настоящий, живой скат — несмотря на то, что зорко у него одно лишь сердце (зорко — буквально, но не более, чем хламидомонада).

Управляемые светом клетки сердечной мышцы обеспечивают плавание искусственного животного

Из самого сердца...

...крыс были получены клетки, которые змееобразно выложили на силиконовой подложке (рис. 1). 200 000 кардиомиоцитов взяли у двухдневных крысиных эмбрионов и с помощью белкового покрытия ориентировали в нужном направлении, чтобы импульс проходил по ним вдоль «змеек» — от переднего к заднему концу каждого плавника биоробота.

Вместо хряща у миникиборга золотой скелет. В отличие от живых скатов, плавники которых имеют два слоя мышц, позволяющие поднимать и опускать каждый плавник, маленький биоробот снабжен только слоем, тянущим вниз, а выпрямление эластичного золотого каркаса позволяет плавнику изгибаться в обратную сторону. Повышенная гибкость плавников по сравнению с «телом» достигается за счет тонких краев.

Строение искусственного ската

Рисунок 1. Особенности строения искусственного ската. а — Живой скат. б — Строение плавника живого ската. в — Четыре слоя тела искусственного ската: слой 1 — корпус из полидиметилсилоксана (силикона, применяемого в медицине, косметологии и даже пищевой промышленности); слой 2 — золотой скелет; слой 3 — снова тонкий слой полидиметилсилоксана, на котором расположены мышечные клетки (слой 4). г — Концепт. д — Обхождение препятствий в зависимости от интенсивности подаваемого сигнала. Рисунок из [2].

По сравнению с предыдущим созданием ученых, силиконовым медузоидом [3], похожим на прозрачный нежный цветок с восемью лепестками, движения ската гораздо меньше напоминают сокращения сердца. И плавала изящная робомедуза только в электрическом поле, направить же движение своенравной красавицы по своему желанию и тем более научить обходить препятствия ученые даже не пытались.

С точки зрения хламидомонады

Шестнадцатимиллиметровые скаты оказались куда способнее своей предшественницы. В отличие от обычных роботов, они не нуждаются ни в проводах, ни в батарейках. Синие лампочки — единственный маяк, на который они ориентируются и которым приводятся в движение (правда, скорость их невелика — 1,5 см в секунду). Заставить свет так волновать крысиные сердца (точнее, их клетки) помогло нестандартное применение передовой технологии — оптогенетики (см. врезку).

Оптогенетика

Оптогенетика — сочетание генетических и оптических методик, позволяющее тонко регулировать работу нейронов и мышечных клеток путем воздействия на них светом [4]. Эта технология, возникшая в 2005 году, основана на действии белков-рецепторов из группы опсинов (к ним относятся и белки, позволяющие нам видеть). Эти белки находятся в мембране клетки и служат там ионными каналами — насосами, меняющими форму под действием света.

Если заразить нейрон или мышечную клетку вектором (безобидным вирусом, лишенным опасных свойств и несущим гены, необходимые ученым) с геном, кодирующим опсин, этот ген начнет производить белок, и мы получим клетку с ионными каналами в мембране, которые можно активировать с помощью света.

При воздействии света определенной длины волны (в зависимости от типа опсина: в оптогенетике чаще всего используют микробные галородопсины, реагирующие на желтый свет, и каналородопсины, активируемые красным) белок «открывает ворота» и пропускает внутрь клетки положительно заряженные ионы, пока там мало им подобных. В какой-то момент в клетке формируется положительный заряд по сравнению с окружающей средой, после чего каналы отключаются, и разница зарядов выравнивается вытекающими из клетки ионами калия. На этом механизме основана природа электрического импульса, возбуждения нервных клеток и сокращения мышц. Таким образом, оптогенетика позволяет нам с большой точностью «включать» и «выключать» нервные и мышечные клетки с помощью света.

Обычно оптогенетику используют для более детального исследования работы нейронных связей [5]. Бесспорно, гораздо более интересны перспективы, которые сулит управление нервной тканью: уже сейчас с помощью этой технологии ученые могут воздействовать на мышиные воспоминания или дарить рудиментарное зрение слепым крысам. Однако, как показал скат-киборг, подобный подход к мышечной ткани таит в себе немало интересных возможностей.

Кит Паркер и его коллеги в своей работе использовали каналородопсин-2, в природе помогающий плыть на свет одноклеточной водоросли — хламидомонаде Рейнгарда.

Чтобы управлять таким скатом, нужен двойной источник света (каждая лампочка — на своих частотах). Когда лампочки вспыхивают, клетки сокращаются по очереди, изгибая каждый плавник, и робот начинает движение. Для поворотов на один плавник нужно светить ярче или же быстрее мигающим светом.

Достижения скатоводства

Оценивая свои результаты, ученые даже сравнили кинематику и гидродинамику биоробота и живого ската, показав, что асимметричный золотой скелет с отростками компенсирует отсутствие второго мышечного слоя, а выбранная ими в окончательном варианте толщина плавников оптимальна и приближает его характеристики к природным аналогам. Правда, двигаться без помех он может лишь в упорядоченном потоке жидкости, да и то — в среде с добавлением питательных веществ и при температуре крысиного тела (38,5–39,5 °C).

Последним испытанием скатов-киборгов стал заплыв с препятствиями (рис. 2). По результатам выяснилось, что скорость малютки на протяжении шести дней не опускалась ниже 80% от нормальной.

Передвижение ската

Рисунок 2. До выхода в открытое плавание еще далеко: скорость малютки — лишь девять метров в час. Рисунок из [2].

Но не является ли этот полуторасантиметровый генетический франкенштейн, напоминающий, по словам самих создателей, «прозрачную монетку с хвостиком» [6], лишь дорогостоящей игрушкой скучающих биоинженеров? К чему все эти скрупулезные выверения параметров, если созданное нельзя однозначно назвать ни живым, ни мертвым, ни скатом, ни роботом, ни даже хламидомонадой?

Копировать волнообразные движения скатов в воде имеет смысл хотя бы из-за энергоэффективности. Эта же причина, а также отсутствие контактных проводов и источников питания делает подобный механизм удобным, малозатратным в работе и бесшумным. По предположению ученых, технология может помочь в создании деликатных биороботов для изучения океана, не вмешивающихся в жизнь его обитателей (рис. 3). А в дальнейшем подобные технологии можно разработать и для исследований суши и даже для решения транспортных задач.

Глаз и скат

Рисунок 3. Глаз и скат. Сейчас мы наблюдаем за скатом, а потом он поможет нам наблюдать за другими организмами. Рисунок из [1].

Переходное звено

При всех своих возможностях и перспективах применения мечтать об электрокрысах скаты-киборги, конечно, не могут. Мечтают их создатели — об электросердцах. Точнее, искусственно выращенных [7] или видоизмененных оптогенетическими методами сердцах или их участках, сокращения которых можно запускать и регулировать без хирургического и электрического вмешательств, с помощью точного и безопасного светового воздействия.

Сам по себе маленький скат-киборг не принесет много пользы, однако он является «переходным звеном» между механическими и живыми существами и новой ступенькой к искусственному мышлению, ведь это создание при всей своей простоте обрабатывает различные сигналы и отвечает на них сложным поведением.

По словам Кита Паркера, творение его команды сродни произведению искусства, и смотреть на него можно по-разному [6]. Ихтиологи благодаря ему лучше поймут, как двигается скат и почему он так устроен, кардиологи — как создать искусственное сердце, а инженеры увидят, что живые клетки — перспективный строительный материал для роботов будущего — будущего, которое уже стучится в наши двери.

Литература

  1. Pennisi E. (2016). Robotic stingray powered by light-activated muscle cells. Science News;
  2. Park S.J., Gazzola M., Park K.S., Park S., Di Santo V., Blevins E.L. et al. (2016). Phototactic guidance of a tissue-engineered soft-robotic ray. Science353, 158–162;
  3. Сердце как медуза: плавучий «франкенштейн». (2016). Популярная механика;
  4. биомолекула: «Светлая голова»;
  5. биомолекула: «Как спасти Тринадцатую? (Перспективы лечения болезни Хантингтона)»;
  6. McDonald C. (2016). A bio-hybrid stingray robot powered by rat muscle. Popular Science;
  7. биомолекула: «Киборги среди нас»;
  8. Cross R. (2016). Robotic stingrays made with rat heart, algae, and plastic fins. MIT Technology Review.

Дополнительные материалы

Автор: Мищенко Екатерина.

Число просмотров: 270.

Вернуться в раздел «Новости»

Комментарии

(Оставить комментарий) (показывать сначала старые комментарии)

Яндекс.Метрика

© 2007–2015 «биомолекула.ру»
Электропочта: info@biomolecula.ru
О проекте · RSS · Сослаться на нас

Дизайн и программирование —
Batch2k15.

Сопровождение сайта — НТК «Биотекст».

Условия использования сайта
Об ошибках сообщайте вебмастеру.