Периодическая система вирусов, или Классификация вирусов по Балтимору 50 лет спустя
14 сентября 2021
Периодическая система вирусов, или Классификация вирусов по Балтимору 50 лет спустя
- 3354
- 0
- 2
-
Автор
-
Редактор
Темы
В этом году вирусология отмечает необычный юбилей. Ровно 50 лет назад американский ученый Дэвид Балтимор предложил классификацию вирусов, основанную на молекулярном составе их геномов и этапах экспрессии генов. Балтимор подразделил все известные на тот момент вирусы на шесть классов: вирусы, геномы которых представлены двухцепочечной ДНК; вирусы с геномами из одноцепочечной ДНК; вирусы с геномами из двухцепочечной РНК; вирусы с геномами из одноцепочечной РНК положительной полярности; вирусы с геномами из одноцепочечной РНК отрицательной полярности; вирусы, способные к обратной транскрипции, у которых РНК-геном положительной полярности с помощью специального фермента в клетке переходит в форму двухцепочечной ДНК. Эта система оказалась так проста и изящна, что, несмотря на стремительное развитие вирусологии на рубеже веков и в новом тысячелетии благодаря усовершенствованию методов секвенирования, по-прежнему активно используется учеными. Какие преобразования претерпела система Балтимора за минувшие полвека? Можно ли на основе классификации Балтимора создать «периодическую систему вирусов», позволяющую, подобно периодической системе химических элементов, предсказывать свойства еще не описанных групп вирусов?
Ты помнишь, как все начиналось…
В сентябре 1971 года в журнале Bacteriology Reviews, который сейчас известен как Microbiology and Molecular Biology Reviews, вышла небольшая статья за авторством Дэвида Балтимора, озаглавленная Expression of animal virus genomes. В этой статье, состоящей всего из семи страниц, он предложил удивительно простую и логичную систему классификации вирусов, основанную на том, какие этапы включает путь от нуклеиновой кислоты, заключенной в вирион, до мРНК, с которой транслируются вирусные белки. Балтимор предложил разделить все известные на тот момент вирусы животных на шесть классов (рис. 1) [1]:
- Класс I. Вирусы с геномами, представленными двухцепочечной ДНК (дцДНК). В их вирионах генетическая информация присутствует в форме дцДНК, а в клетке экспрессия генов включает все те же этапы, что и экспрессия белоккодирующих клеточных генов.
- Класс II. Вирусы, у которых в вирионе геном присутствует в виде одноцепочечной ДНК (оцДНК), но в клетке их репликация включает образование дцДНК в качестве промежуточного продукта.
- Класс III. Вирусы с геномами, представленными двуцепочечной РНК (дцРНК). В клетке с вирионной дцРНК идет транскрипция, в результате которой образуются вирусные мРНК. Именно с них впоследствии и будут синтезированы вирусные белки.
- Класс IV. Вирусы, которые упаковывают в вирионы одноцепочечную РНК (оцРНК) положительной полярности. РНК положительной полярности пригодна для трансляции, а РНК отрицательной полярности не может быть транслирована в белок напрямую: в этом случае необходим дополнительный этап синтеза комплементарной РНК, которая будет иметь положительную полярность.
- Класс V. Вирусы, геномы которых представлены РНК отрицательной полярности. В клетках на матрице их геномов синтезируются вирусные мРНК, имеющие положительную полярность.
- Класс VI. Вирусы, способные к обратной транскрипции. В вирион упаковывается оцРНК положительной полярности, которая в клетке при помощи фермента обратной транскриптазы переводится в форму дцДНК и далее встраивается в геном клетки-хозяина при участии интегразы.
Как оказалось, эта система подходит не только для классификации вирусов животных, но и для классификации вирусов остальных организмов — бактерий, растений и других [2].
Вскоре после публикации первого варианта классификации вирусов по Балтимору была описана необычная группа вирусов животных — гепаднавирусы, к которой относится, в частности, вирус гепатита B [3]. В их вирионы упаковывается дцДНК, причем одна цепь, как правило, не полностью «покрывает» другую, а репликация в клетке происходит через РНК-интермедиат и обратную транскрипцию. Так в системе Балтимора появился еще один, седьмой класс [2].
Стоит отметить, что в классификации Балтимора главную роль играет не сама форма нуклеиновой кислоты, которой представлен вирусный геном в вирионе, а этапы пути от генетического материала вириона к белку. Так, вирусы VI класса можно было бы слить с вирусами IV класса, так как и у тех, и у других в вирионы упаковывается оцРНК положительной полярности, однако пути от оцРНК к белку кардинально различаются [2].
Нельзя забывать, что классификация вирусов по Балтимору не указывает на родственность вирусов. Схожесть этапов экспрессии генов не обязательно подразумевает родство геномных последовательностей. Классическая биологическая классификация вирусов, основанная на их филогенетическом родстве, существует в параллели с классификацией вирусов по Балтимору и разделяет вирусы на виды, роды, семейства и порядки (таксоны более высокого ранга фигурируют в научной литературе крайне редко). Эту классификацию поддерживает и регулярно обновляет Международный комитет по классификации вирусов (International Committee on Taxonomy of Viruses, ICTV).
Разумеется, за минувшие 50 лет было открыто множество новых вирусов, и некоторые из них с трудом вписываются в систему Балтимора. Например, родственные вирусы семейства Pleolipoviridae могут упаковывать в вирионы как оцДНК, так и дцДНК, что в системе Балтимора формально заставляет разделять их по разным классам. У некоторых вирусов в геномах есть участки и оцДНК, и дцДНК. Еще более запутана и непонятна ситуация с амбисенсными РНК-вирусами, такими как аренавирусы и некоторые представители порядка Bunyavirales. У этих вирусов геном разбит на несколько сегментов РНК, причем один из них имеет участки и положительной, и отрицательной полярности. А вирусы грибов из семейства амбивирусов вообще имеют рамки считывания на РНК-цепях и положительной, и отрицательной полярности. Некоторые исследователи предлагают выделить их в дополнительный класс в рамках системы Балтимора [2].
Классификация по Балтимору: естественная или искусственная?
Ценность любой классификации определяется тем, как много особенностей классифицируемых объектов она учитывает. Идеальная классификация, которая, несомненно, утопична, должна была бы учитывать все ключевые особенности объектов, которые она классифицирует. В этом отношении классификация по Балтимору весьма неплоха. Она прямо или косвенно учитывает размер генома, репликативный цикл, этапы экспрессии генов, генный состав, присутствие или отсутствие в вирионе компонентов систем репликации и транскрипции, а также ряд других черт, характеризующих вирус [2].
Примечательно, что в классификации Балтимора отображены некоторые особенности вирусов, которые напрямую не вытекают из правил, согласно которым она строится. Возьмем, к примеру, размер генома. Все вирусы со второго по седьмой класс имеют, как правило, маленькие геномы по сравнению с геномами клеточных организмов, а их репликация сопровождается внесением большого количества ошибок. Здесь особняком стоят широко известные в последнее время коронавирусы. Их геномы содержат от 30 до 40 тысяч пар оснований, а в репликативном аппарате имеются механизмы коррекции ошибок, повышающие точность репликации. В целом, малый размер геномов вирусов, входящих во II–VII классы, объясняется относительной химической нестабильностью оцРНК и структурными ограничениями, накладываемыми на геномы, представленные оцДНК или дцРНК: оцДНК слишком склонна к образованию вторичных структур, а дцРНК обладает повышенной структурной жесткостью, что мешает ее упаковке в вирионы. Что же касается вирусов I класса, имеющих геномы из дцДНК и экспрессирующих гены по той же схеме, что и живые клетки, тот тут эффективная репликация позволяет им иметь геномы длиной 50 тысяч пар оснований и более [2]. Именно к этой группе относятся так называемые гигантские вирусы, которые и по размеру вириона, и по размеру генома близки к клеточным организмам .
Подробнее о гигантских вирусах читайте в нашей статье «Гиганты вирусного мира» [4].
Еще один интересный момент, который «невольно» учитывает система классификации по Балтимору, — это необходимость в кодировании собственной РНК-зависимой РНК-полимеразы вирусами, относящимися к III и V–VII классам. Дело в том, что удвоение РНК, как и обратная транскрипция, вообще-то, клеткам несвойственны, за исключением некоторых процессов вроде РНК-интерференции и удлинения теломер, и вирусам, имеющим РНК-геномы, ничего не остается, как иметь гены для этих ферментов в собственных геномах. Можно сказать, что система классификации по Балтимору позволяет отчасти предсказать наличие определенных генов у РНК-вирусов. Более того, вирусам из указанных групп приходится включать эти ферменты в свои вирионы, чтобы, попав в клетку, немедленно приступить к репликации и синтезу собственных белков. Стоит отметить, что вирусам IV класса, которые имеют геномы в виде РНК положительной полярности, РНК-зависимая РНК-полимераза не нужна, поскольку сама геномная РНК может выступать в роли матричной, поэтому они являются исключением из правила. ДНК-вирусам в отношении репликации и транскрипции генома можно полностью положиться на клетку-хозяина, поэтому собственных ДНК- и РНК-полимераз они, как правило, не кодируют, хотя и тут есть необычные исключения. Так, у вирусов семейства Bidnaviridae есть собственная ДНК-полимераза, роль затравки для которой исполняет белок [2].
Интересно, что, несмотря на исключительное положение ДНК-вирусов в плане отсутствия нужды в собственных ферментах репликации и экспрессии генов, их большие геномы все же содержат гены, кодирующие компоненты этих систем. Например, у гигантского тупанвируса имеется почти полный арсенал собственных тРНК и аминоацил-тРНК-синтетаз, — в конце концов, вирусы с огромными геномами могут себе многое позволить [5]. За счет этого многие ДНК-вирусы становятся более автономными в плане репликации и синтеза белка, разве что собственных рибосом они никогда не содержат [2].
Некоторые другие закономерности, отраженные в системе Балтимора, объяснить сложнее. Например, все РНК-содержащие вирусы VI класса, практикующие обратную транскрипцию, в своих вирионах содержат обратную транскриптазу, которая переводит геномную оцРНК положительной полярности в дцДНК, хотя остается непонятным, почему у них не происходит непосредственной трансляции оцРНК, как это происходит у вирусов IV класса. Интересно, что на момент создания классификации Балтимора все известные дцРНК-вирусы имели сегментированные геномы, и было совершенно неясно, что мешает им иметь цельный несегментированный дцРНК-геном. И хотя спустя несколько лет после публикации классификации Балтимора описали семейство тотивирусов, имеющих несегментированные дцРНК-геномы, общий тренд к сегментации геномов у дцРНК-вирусов сохраняется. Однозначного объяснения этой тенденции нет, но, возможно, это обусловлено трудностью упаковки в вирионы крупных жестких молекул двухцепочечной РНК [2].
Распределение разных групп вирусов по различным группам организмов тоже весьма нетривиально и порой просто необъяснимо (рис. 2). Почему среди вирусов прокариот так мало РНК-вирусов и нет вирусов, использующих обратную транскрипцию? Почему среди эукариот в целом преобладают оцРНК-вирусы с положительной полярностью? Почему среди вирусов грибов преобладают вирусы с дцРНК-геномами? Почему у животных так много вирусов VI класса? Почему ДНК-содержащие вирусы распространены среди животных и одноклеточных эукариот, но не растений?
Однозначных ответов на большинство из этих вопросов нет, хотя в некоторых случаях можно предложить довольно правдоподобные объяснения. Так, у растений ДНК-содержащие вирусы с крупными геномами просто не смогли бы протискиваться через плазмодесмы — узкие цитоплазматические «мостики», соединяющие соседние клетки. Возможно, что в клетках прокариот, лишенных ядра, ДНК-вирусам оказалось размножаться проще, поскольку все необходимые ферменты и так плавают в цитоплазме, и они в конкурентной борьбе почти полностью вытеснили РНК-содержащие вирусы. У эукариот, напротив, ядро представляет собой весомую преграду для легкой и непринужденной репликации ДНК-вирусов, поэтому РНК-вирусы, приспособившиеся реплицироваться в специальных вирусных фабриках, собранных из эндомембранной системы клетки-хозяина, распространились среди эукариот сильнее. Почему же среди эукариот преобладают именно оцРНК-вирусы с положительной полярностью? Возможно, это связано с тем, что голая РНК отрицательной полярности, а тем более дцРНК, запускает защитный интерфероновый ответ в клетке, поэтому для эффективной репликации этим вирусам необходим укромный уголок, недоступный для защитных систем клетки-хозяина [2].
Как мы видим, система Балтимора, несмотря на свою кажущуюся простоту, позволяет учитывать множество особенностей вирусов. А может ли она дать возможность предсказать свойства еще не открытых вирусов?
«Периодическая система» вирусов
Периодическая система химических элементов, созданная Дмитрием Менделеевым, примечательна не только тем, что она позволила упорядочить до того разрозненные и несистематизированные сведения о разных химических элементах, но и предсказать свойства элементов, еще не известных науке. Можно ли на основе системы Балтимора, так удачно упорядочивающей свойства большинства открытых вирусов, создать «периодическую систему» вирусов, которая позволила бы предсказать особенности еще не открытых вирусов?
Спустя три года после публикации системы Балтимора советский вирусолог Вадим Израилевич Агол расширил и модифицировал ее, создав нечто вроде «периодической системы» вирусов, в которой упорядочены все возможные варианты жизненных циклов вирусов (рис. 3). Более того, в предложенной им системе представлены все теоретически возможные пути передачи биологической информации в целом [2].
Конечно, на момент создания большинство ячеек этой таблицы пустовали, однако к сегодняшнему дню многие из них удалось заполнить. Например, описали род вирусов Protoparvovirus, в вирионы которого упаковывается только оцДНК отрицательной полярности (то есть ДНК, с которой не может идти транскрипция, — транскрипция может идти с комплементарной ей цепи положительной полярности). Чуть позже обнаружили загадочное семейство Anelloviridae, геномы членов которого тоже представлены отрицательной оцДНК. Одну ячейку таблицы заняли плазмиды. Например, F-плазмида и подобные ей при передаче от одной бактериальной клетки к другой переходит из состояния дцДНК в оцДНК, а на стадии дцДНК с нее транскрибируется РНК положительной полярности [2].
Тем не менее незаполненных ячеек еще предостаточно. Можно предполагать, что стремительное развитие высокопроизводительного секвенирования и метагеномики позволят нам описать еще множество вирусов с разнообразными жизненными циклами, и количество пустующих ячеек в «периодической системе» вирусов будет сокращаться. Однако полное заполнение таблицы крайне маловероятно. Если даже вирусы с некоторыми экзотическими системами передачи генетической информации существуют, то они крайне редко встречаются в биосфере, и даже с помощью всемогущей метагеномики мы не сможем их «поймать». В ходе эволюции промежуточные продукты удвоения генома в виде РНК—ДНК-гибридов, и уж тем более геномы, представляющие собой РНК—ДНК-гибриды, отбраковывались, поэтому весьма маловероятно, что вирусы с такими геномами когда-либо будут обнаружены.
Литература
- D Baltimore. (1971). Expression of animal virus genomes. Bacteriol Rev. 35, 235-241;
- Eugene V. Koonin, Mart Krupovic, Vadim I. Agol. (2021). The Baltimore Classification of Viruses 50 Years Later: How Does It Stand in the Light of Virus Evolution?. Microbiol Mol Biol Rev. 85;
- Не дружите, дети, с гепатитом B;
- Гиганты вирусного мира;
- Jônatas Abrahão, Lorena Silva, Ludmila Santos Silva, Jacques Yaacoub Bou Khalil, Rodrigo Rodrigues, et. al.. (2018). Tailed giant Tupanvirus possesses the most complete translational apparatus of the known virosphere. Nat Commun. 9.