Пить или не пить — два разных сигнала от нашего мозга
11 февраля 2015
Пить или не пить — два разных сигнала от нашего мозга
- 1191
- 0
- 1
-
Автор
-
Редактор
Жажда — это чувство, знакомое каждому человеку. Стоит только наполнить стакан и сделать несколько глотков, как появляется удовлетворение — чувство жажды исчезает. Такие простые действия мы совершаем ежедневно, даже не представляя, как сложна регуляция ощущения жажды. Оказалось, что в процессе регуляции участвуют два игрока — две совершенно разные группы нейронов.
Как известно, организм млекопитающих большей частью состоит из воды: например, в мозге воды до 85%, а в крови вообще 92. Вода — незаменимый участник разнообразных биохимических процессов, которые протекают в клетках. Потеря воды в количестве 0,5% массы тела вызывает жажду, и привыкания к этому чувству не наступает. Каким же образом поддерживается водный баланс в организме?
Считается, что понижение внутриклеточного осмотического давления (это давление, которое изнутри оказывает вода с растворенными веществами на клеточную мембрану) в нейронах приводит к тому, что они отправляют тревожный сигнал: «Воды!». Кроме того, при уменьшении объема жидкости, циркулирующей в кровяном русле, падает артериальное давление, что вызывает синтез гормона ангиотензина II. Этот гормон проникает через гематоэнцефалический барьер и тоже бежит жаловаться нервным клеткам гипоталамуса [1].
Но если жалобы услышаны, и водный баланс пополнен, то пить больше НЕ ХОЧЕТСЯ! Животные потребляют ровно столько жидкости, сколько нужно для восстановления водного баланса. «Почему?» — подумали ученые... и нашли в мозге мышей две разные группы нейронов: первые требуют утолить жажду, а вторые — прекратить пить [2].
В исследованиях, проводившихся ранее, уже было показано, что очень важные зоны мозга — ядра гипоталамуса — активируются при дегидратации (например, если животным не давать пить в течение 48 часов).
Для того, чтобы прояснить, какие конкретно области гипоталамуса отправляют сигналы, регулирующие потребление воды, ученые использовали оптогенетический метод [3]. С помощью этого метода исследуют работу нейронов путем внедрения в их мембрану специальных транспортных белков — опсинов, реагирующих на воздействие света*. Проще говоря, белки-опсины являются каналами, встроенными в мембрану клеток и пропускающими ионы натрия внутрь клетки под воздействием света. Резкое увеличение количества положительно заряженных ионов с внутренней стороны мембраны приводит к быстрому изменению мембранного потенциала, за счет чего возникает нервный импульс. Для экспрессии каналов используют методы генной инженерии. В нашем случае учеными была создана генетическая конструкция, в которой ген самого популярного опсина — каналродопсина 2 (channelrhodopsin-2, ChR2) — был встроен «под промотор» гена CamKII (Са2+/кальмодулин-зависимой киназы II), который активно работает в возбуждающих нейронах [2]. Такая конструкция, доставленная в клетки, приводит к экспрессии в нейронах опсина ChR2 с последующим его встраиванием в мембрану (рис. 1). Нужно только одно дополнительное условие — доставить конструкцию точно в исследуемую зону мозга. Для этого ученые воспользовались методом стереотаксического наведения, который заключается в том, чтобы зафиксировать голову животного и, ориентируясь на расстояние от черепа до нужной области, а также на очень подробные и очень точные карты мозга, ввести конструкцию в целевую зону (в данном случае — в расположенный в районе гипоталамуса субфорникальный орган). После этого в мозг животного внедряется лазер, который подает световые импульсы.
* — Оптогенетический подход уже описывался биомолекулой применительно к изучению нейродегенеративных заболеваний — «Как Как спасти Тринадцатую? (Перспективы лечения болезни Хантингтона)» [4] — и к преодолению слепоты, вызванной дистрофией сетчатки — «Оптогенетика + голография = прозрение?» [5] — Ред.
Выяснилось, что при подаче светового импульса в «нейроны жажды», находящиеся в гипоталамусе, животное бежит к воде, чтобы напиться. При повторяющемся включении света оно делает это снова и снова (см. видео). Более того, стимуляция нейронов заставляет мышь пить, даже если она уже достаточно гидратирована. Мозг грызуна со встроенной в нейроны гипоталамуса генетической конструкцией в течение 15 минут стимулировали светом с интервалами по 30 секунд. В результате животное выпивало в среднем в полтора раза больше воды, чем мышь, которую не поили в течение 48 часов. Интересно, что ChR2-экспрессирующее животное отдавало предпочтение чистой воде и не желало употреблять воду с добавлением даже небольших количеств соли, меда, и уж тем более не стало пить минеральное масло, глицерин и полиэтиленгликоль. Эти эксперименты говорят о том, что возбуждающие нейроны одного из ядер гипоталамуса отвечают исключительно за побуждение пить воду, их действие не связано с чувством голода или разницей во вкусе потребляемой жидкости.
По соседству была найдена другая группа нейронов, отличающаяся от первой набором белков. В частности, вторая группа нейронов экспрессировала VGAT — один из белков, вовлеченных в процесс захвата ГАМК и глицина синаптическими пузырьками (рис. 2). Повторив эксперименты и с этими нейронами, ученые убедились, что нашли «выключатели жажды». Оптическая стимуляция VGAT-нейронов приводила обезвоженных животных к отказу от воды. Интересно, что при этом голодные и обезвоженные животные с аппетитом потребляли пищу, но не прикасались к воде.
Исходя из вышесказанного, получается, что для точной регуляции количества поступающей в организм жидкости должны быть задействованы две разные группы нейронов: одна группа призывает срочно пополнить запас жидкости, а как только воды в организме становится достаточно, вторая группа приказывает немедленно остановиться. Похоже, ученые действительно близко подобрались к разгадке механизмов, которые контролируют потребление воды. Вероятно, такой же принцип работы двух групп нейронов можно обнаружить у всех млекопитающих. Может быть, четкое разделение функций между двумя группами нейронов обусловлено еще более важными причинами? Каковы механизмы жажды у животных, обитающих в засушливых условиях, например верблюдов? (Верблюды, не употребляя воду, могут терять до 40% веса без угрозы для жизни, но неужели они не хотят пить?) На эти вопросы еще предстоит найти ответы.
Литература
- Физиология человека. В
3-х томах / Под ред. Р. Шмидта и Г. Тевса. Пер. с англ. —3-е изд. — М.: Мир, 2005. — Т.1 — 323 с., Т.2 — 314 с.; Т.3 — 228 с.; - Oka Y., Ye M., Zuker Ch.S. (2015). Thirst driving and suppressing signals encoded by distinct neural populations in the brain. Nature. doi: 10.1038/nature14108;
- Boyden E., Zhang F., Bamberg E., Nagel G., Deisseroth K. (2005). Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neurosci. 8, 1263–1268;
- Как спасти Тринадцатую? (Перспективы лечения болезни Хантингтона);
- Оптогенетика + голография = прозрение?.