https://grant.helicon.ru/?utm_source=site&utm_medium=news&utm_campaign=grantkh&utm_content=biomolecula-09-24&utm_term=banner
Подписаться
Оглавление
Биомолекула

Как сетчатка распознаёт движение

Как сетчатка распознаёт движение

  • 2389
  • 1,2
  • 1
  • 1
Добавить в избранное print
Новость

Несмотря на то, что строение глаза уже хорошо изучено, многие тонкости работы сетчатки все еще остаются непонятными для ученых. На рисунке — изображение среза сетчатки, окрашенной флуоресцентными красителями.

Иногда говорят, что мы видим не глазами, а мозгом, имея в виду, что распознавание объектов происходит в мозгу, в который поступает только «сырая» информация о распределении световых пятен в пространстве. Строго говоря, это не совсем верно. Некоторые этапы обработки происходят уже на уровне сетчатки. Еще 50 лет назад эксперименты показали, что сетчатка может определить, в какую сторону и с какой скоростью движется зрительный сигнал. Но как именно нейроны сетчатки определяют такую информацию, до недавнего времени оставалось загадкой.

Можно подумать, что по сравнению с такими сложными когнитивными функциями как сознание и язык, распознавание движущийся объектов — нечто простое и понятное. Однако ученые потратили более полувека, пытаясь разобраться в механизмах зрительного распознавания. Самым загадочным был вопрос, как нейроны получают информацию о движении визуального стимула в каком-то определенном направлении, если зрительные клетки — фоторецепторы — не могут распознать это движение. Ответить на этот непростой вопрос недавно смогли ученые из Массачусетского технологического института (МТИ) благодаря помощи добровольцев онлайн-проекта EyeWire (это название сложно красиво перевести на русский, получается что-то вроде «соединение связей глáза») [1].

Наука как игра

Для этого, чтобы разобраться в том, как наши глаза распознают движение, ученые реконструировали строение сетчатки мышиного глаза в мельчайших деталях. Основой для этой реконструкции послужили фотоснимки, полученые с помощью электронного микроскопа, дающего очень большое увеличение. Первые этапы обработки этих снимков были сделаны с помощью искусственного интеллекта. Но даже современное развитие технологий все еще не позволяет компьютеру идеально выполнять некоторые задания, особенно связанные с распознаванием изображений. Поэтому ученым была необходима человеческая помощь. Если бы они стали заниматься обработкой фотографий в лаборатории, где работает полтора десятка человек, то на завершение работы ушли бы годы. Чтобы решить эту проблему, исследователи превратили скучное сопоставление фотографий в красочную онлайн-игру EyeWire. Таким образом, принять участие в научном исследовании мог любой желающий в любой точке мира, — достаточно было иметь доступ в интернет. (Примеры, когда ученые брали себе в «коллабораторы» обычных геймеров, были и раньше, — см., например, «Тетрис XXI века» [5].)

В EyeWire игроку демонстрируется случайно выбранный сегмент сетчатки — в виде трехмерного изображения и последовательной серии срезов (рис. 1). Необходимо реконструировать сегмент нейрона, закрашивая области на фотографиях срезов. Реконструкции от разных участников сравниваются между собой, на основе чего воссоздается наиболее точная трехмерная модель нейрона. На основе этого сравнения игроки получают и призовые очки. Определить, каким образом награждать участников очками, было непросто для разработчиков игры, т.к. EyeWire не знает, какой должна быть правильная реконструкция. Поэтому количество очков зависит от сравнения результатов разных игроков. Чем больше реконструкция одного игрока похожа на реконструкции других игроков, тем больше призовых очков он получает.

EyeWire

Рисунок 1. Интерфейс онлайн-игры EyeWire

Связи в сетчатке и распознавание движения

Для того чтобы разобраться в результатах реконструкции сетчатки игроками EyeWire, нужно вспомнить, как сетчатка устроена и функционирует. Сетчатка глаза млекопитающих называется инвертированным органом, т.к. фоторецепторы, которые являются первым рабочим звеном сетчатки, находятся в нижнем слое, а над ними лежат два слоя нейронов, которые собирают информацию от фоторецепторов и передают ее в головной мозг (рис. 2). Свет проходит через слои нейронов и активирует фоторецепторные клетки сетчатки (всем известные палочки и колбочки; см. «Зрительный родопсин — рецептор, реагирующий на свет» [6]), а они передают электрический сигнал по цепочке нейронов: через биполярные нейроны к амакриновым нейронам и далее — к волокнам зрительного нерва. Палочки и колбочки не могут воспринимать и передавать нейронам информацию о движении зрительного сигнала в ту или иную сторону. Как же тогда нейроны получают эту информацию? Именно для того, чтобы ответить на этот вопрос, ученым из МТИ требовалась реконструкция сетчатки, на которой они подробнейшим образом изучили взаимное расположение биполярных и амакриновых клеток (рис. 3).

Строение сетчатки глаза млекопитающих

Рисунок 2. Строение сетчатки глаза млекопитающих

Was ist Farbenblindheit (Achromatopsie)?, рисунок адаптирован

Трехмерная реконструкция нейронов сетчатки

Рисунок 3. Трехмерная реконструкция нейронов сетчатки: только биполярные клетки (а), биполярные и амакриновые клетки (б)

На первом этапе исследователи разделили все биполярные клетки на пять типов, согласно их размеру и особенностям расположения внутри нейронного слоя (рис. 4а). После анализа связей биполярных (обозначаемых латинскими буквами BC) и амакриновых (SAC) нейронов оказалось, что нейроны типов BC2 и BC3a образуют контакты с SAC значительно чаще других типов биполярных клеток. На втором этапе ученые определили, с какими участками отростков амакриновых клеток связывают разные типы BC. Выяснилось, что BC2 образуют контакты с отростками ближе к соме амакриновых нейронов (тело клетки, которое содержит ядро и основные органеллы), а BC3a — как можно дальше от сомы (рис. 4б). Важным дополнением к этому открытию является достаточно хорошо известный факт, что BC2 передают поступающий на них сигнал с небольшим отставанием (в 50–100 мс) [3].

Биполярные клетки

Рисунок 4. Биполярные клетки. а — Все биполярные клетки делятся на 5 групп по размеру и глубине расположения с нейронном слое. б — Разные типы биполярных клеток связываются с разными участками нейронного отростка амакриновой клетки.

Наличие такого отставания может помочь амакриновым клеткам определить направление движения зрительного объекта следующим образом. Если движение происходит от сомы к окончанию нейронного отростка, то сначала будет активироваться та биполярная клетка, что контактирует с SAC ближе к соме, а потом — та, что дальше. При этом из-за отставания сигнала от нейрона BC2, сигналы от обеих биполярных клеток придут к отростку амакринового нейрона одновременно. Их сигналы сложатся, активируют амакриновую клетку, и она передаст сигнал дальше по нейронной цепочке. Если же движение будет происходить в противоположном направлении (к соме амакринового нейрона), синхронизации сигналов от биполярных клеток не будет, и активации SAC не происходит. Получается, что в зависимости от того, как направлены отростки той или иной амакриновой клетки, при движении объекта в разных направлениях будут активироваться разные группы амакриновых клеток, и зрительная информация будет «меченной» по направлению.

Модели связи биполярных и амакриновых клеток

Рисунок 5. Пресинаптическая (а) и постсинаптическая (б) модели связи биполярных и амакриновых клеток. τ — задержка в передаче сигнала.

Благодаря более подробному изучению строения сетчатки исследователи из МТИ смогли построить новую модель связи биполярных и амакриновых клеток, которую ученые называют «пресинаптической моделью», т.к. отставание в передаче сигнала имеет место до синаптической связи биполярных клеток с амакриновыми (рис. 5а). Более ранние модели являлись «постсинаптическими», т.к. предполагали, что отставание в передаче сигнала связано с особенностями амакриновых клеток, т.е. происходит после синаптического контакта BC—SAC (рис. 5б). Главным недостатком постсинаптической модели была ее неспособность объяснить ряд экспериментальных данных, полученных учеными-физиологами ранее. Новая пресинаптическая модель не имеет этого недостатка, и не только объясняет все имеющиеся данные, но и позволяет ставить новые научные вопросы. Хотя и эта модель еще не является идеальной. В своей статье исследователи подчеркивают, что, возможно, для более точного описания работы сетчатки пост- и пресинатическая модели должны быть частично объединены. Кроме того, вероятно, что в модель необходимо включить и другие нейроны. Как отмечает руководитель научной группы Себастиан Сеунг, полученная ими карта связей сетчатки представляет собой всего лишь маленькую часть всех существующих в ней связей, и для полного понимания функционирования нейронной сети, обеспечивающей наше зрение, необходимо добавить в эту карту недостающие компоненты [4].

Новые возможности для создания коннектóма

Исследование группы Сеунга подтверждает, что реконструкция строения нейронных сетей может помочь ученым разобраться с тем, как эти сети работают. И чем лучше становятся компьютерные технологии, позволяющие проводить сложный анализ изображений, тем больше ученые узнают о работе нашей нервной системы. Кроме того, успех EyeWire доказал, что совместные усилия профессиональных исследователей, искусственного интеллекта и большого количества добровольцев могут не только ускорить ход исследования, но и улучшить его качество. Если пару десятилетий назад возможность изучить все связи в мозге человека (совокупность которых называется коннектóм) казалось фантастикой , сейчас ученые уже обсуждают, в какие сроки эту работу будет возможно завершить.

В завершение можно указать, что связи в мозге изучаются не только по анализу реальных срезов нервной ткани, но и с помощью компьютерного моделирования, поразительно точно воспроизводящего принципы ветвления и соединения нейронов между собой в отдельных нейронных колонках (см. «Blue Brain Project: как все связано?» [7]). А что касается коннектóма и других «-омов», то компьютерная биология продолжает объединять их вместе, рисуя в будущем грандиозную картину «большой биологии» (см. «„Омики“ — эпоха большой биологии» [8]). — Ред.

Литература

  1. Jinseop S. Kim, the EyeWirers, Matthew J. Greene, Aleksandar Zlateski, Kisuk Lee, et. al.. (2014). Space–time wiring specificity supports direction selectivity in the retina. Nature. 509, 331-336;
  2. Firas Khatib, Foldit Contenders Group, Frank DiMaio, Seth Cooper, Maciej Kazmierczyk, et. al.. (2011). Crystal structure of a monomeric retroviral protease solved by protein folding game players. Nat Struct Mol Biol. 18, 1175-1177;
  3. Tom Baden, Philipp Berens, Matthias Bethge, Thomas Euler. (2013). Spikes in Mammalian Bipolar Cells Support Temporal Layering of the Inner Retina. Current Biology. 23, 48-52;
  4. Mo Costandi. (2014). Wiring of retina reveals how eyes sense motion. Nature;
  5. Тетрис XXI века;
  6. Зрительный родопсин — рецептор, реагирующий на свет;
  7. Blue Brain Project: как все связано?;
  8. «Омики» — эпоха большой биологии.

Комментарии