Подписаться
Оглавление
Биомолекула

На страже ДНК, или функции белка РАХХ

На страже ДНК, или функции белка РАХХ

  • 712
  • 0,3
  • 0
  • 1
Добавить в избранное print
Новость

На страже целостности ДНК стоит специальная система — система репарации. Недавно обнаружили белок РАХХ — важный компонент этой системы.

Рисунок в полном размере.

рисунок с сайта odonvv.ru

ДНК — незаменимая молекула, несущая генетическую информацию. Её нужно беречь, о ней нужно заботиться. В клетке существует целая система экстренного ремонта, которая выполняет это благородное дело. В систему входит много компонентов, каждый из которых играет определенную роль. Недавно ученые охарактеризовали новый белок, необходимый для ликвидации чуть ли не самой страшной поломки ДНК — двухцепочечного разрыва.

Чего ДНК боится как огня?

Известно, что ДНК представляет собой двойную спираль. Две цепи ДНК переплетаются и хранят в таком виде генетическую информацию живых организмов. Эта информация должна передаваться от клетки к клетке в неизменном состоянии. Поэтому повреждения в ДНК недопустимы. Однако их нельзя избежать. Повреждения настигают ДНК постоянно, поэтому в клетке существует специальная система ремонта. Её называют системой репарации. Если система репарации нарушена, то ничего хорошего не жди — стабильность генома уменьшается, в нём накапливаются ошибки, возникают заболевания. Известны и наследственные болезни у людей с недостатками в системе репарации, например, пигментная ксеродерма.

Поломки в ДНК бывают нескольких типов, и опасность они представляют разную. Одно из самых серьезных повреждений — это двухцепочечный разрыв. Он чреват не просто появлением локальной ошибки в геноме, а может вызвать гибель клетки. Также двухцепочечные разрывы провоцируют геномную нестабильность, что приводит к превращению нормальной клетки в раковую. Поэтому белки ремонта таких повреждений просто необходимы. Их недостаток вызывает проблемы с иммунитетом, нейродегенерацию, предрасположенность к онкологии [1].

Интересно, что иногда клетка сама создает двухцепочечный разрыв в ДНК. Этот происходит, в норме, при развитии иммунитета [2]. Но и тут белки репарации играют свою роль. Неважно, появился ли разрыв случайно или намеренно, его нужно ликвидировать.

Ликвидация разрывов

Важным механизмом репарации двухцепочечных разрывов является негомологичное соединение концов (НГСК). Оно начинается с того, что белки Ku70 и Ku80 связывают ДНК вблизи разрыва [3]. Затем привлекаются другие компоненты системы репарации и собирается рабочая машина по устранению неисправностей, соединяющая концы ДНК [4]. Интересно, что некоторые белки этой машины похожи друг на друга (например, XRCC4 и XLF). Поэтому их объединили в общее суперсемейство [5]. В целом, белки разные, но у них есть общая похожая часть [6]. Недавно ученые с помощью методов биоинформатики проанализировали ранее не охарактеризованные белки и нашли нового участника этого суперсемейства. Его назвали PAXX (PAralog of XRCC4 and XLF) [7].

Что делает РАХХ?

Светящийся белок

Рисунок 1. Светящийся белок GFP (green fluorescent protein) соединили с белком РАХХ. Такую конструкцию использовали для исследования локализации РАХХ в клетке.

Дополнительное исследование структуры РАХХ подтвердило наличие у него части, характерной для данного суперсемейства. Это уже указывало, что новый белок может участвовать в репарации ДНК. Затем исследователи посмотрели, с какими белками может взаимодействовать РАХХ в клетке. Оказалось, что его основные партнеры — Ku70 и Ku80, те самые, что играют ключевую роль в репарации ДНК.

Также наглядные подтверждения роли РАХХ были получены с помощью микроскопии. Исследователи объединили исследуемый белок с флуоресцентным (рис. 1).

Благодаря такому подходу можно наблюдать за локализацией РАХХ в клетке. Затем учёные спровоцировали появление разрывов в ДНК в определенном месте ядра и наблюдали, как в этом месте скапливается РАХХ (рис. 2). Значит, этот белок привлекается к разрывам.

РАХХ скапливается в месте появления разрывов

Рисунок 2. РАХХ скапливается в месте появления разрывов. По зелёному свечению можно определить, где локализован этот белок. Видно, что в ядре клетки очень много молекул РАХХ, так как ядро почти полностью окрашено зелёным. Белые стрелочки указывают на линию, вдоль которой локализованы разрывы ДНК. Со временем эта линия начинает светиться сильнее.

[7]

Показали, что без белка РАХХ клетки становятся заметно чувствительнее к воздействиям, вызывающим разрывы в ДНК, в том числе, к радиации. Также РАХХ оказался важен для правильной работы других белков системы репарации, то есть эти белки работают в команде. Учёные полагают, что основная роль РАХХ заключается в следующем: он участвует в сборке машины репарации. Уже получены первые данные в пользу этой гипотезы.

Литература

  1. Lisa Woodbine, Andrew R. Gennery, Penny A. Jeggo. (2014). The clinical impact of deficiency in DNA non-homologous end-joining. DNA Repair. 16, 84-96;
  2. Stephen P. Jackson, Jiri Bartek. (2009). The DNA-damage response in human biology and disease. Nature. 461, 1071-1078;
  3. В лунном свете, или Тайная жизнь Ku-антигена;
  4. Gareth J. Williams, Michal Hammel, Sarvan Kumar Radhakrishnan, Dale Ramsden, Susan P. Lees-Miller, John A. Tainer. (2014). Structural insights into NHEJ: Building up an integrated picture of the dynamic DSB repair super complex, one component and interaction at a time. DNA Repair. 17, 110-120;
  5. Takashi Ochi, Qian Wu, Tom L. Blundell. (2014). The spatial organization of non-homologous end joining: From bridging to end joining. DNA Repair. 17, 98-109;
  6. Sebastian Leidel, Marie Delattre, Lorenzo Cerutti, Karine Baumer, Pierre Gönczy. (2005). SAS-6 defines a protein family required for centrosome duplication in C. elegans and in human cells. Nat Cell Biol. 7, 115-125;
  7. Takashi Ochi, Andrew N. Blackford, Julia Coates, Satpal Jhujh, Shahid Mehmood, et. al.. (2015). PAXX, a paralog of XRCC4 and XLF, interacts with Ku to promote DNA double-strand break repair. Science. 347, 185-188.

Комментарии