Что они делают с нашей кровью? Это уже клиника!
31 октября 2019
Что они делают с нашей кровью? Это уже клиника!
- 3267
- 0
- 4
-
Автор
-
Редакторы
Инфографика на конкурс «био/мол/текст»: Клинический анализ крови — самый распространенный лабораторный тест, назначаемый врачом, когда мы приходим на прием и жалуемся на плохое самочувствие. «Кровь из пальца, завтра с 8:00 до 9:30, натощак, N-ный кабинет», — такую фразу неизменно слышали несколько поколений. Однако технология исследования крови претерпела большие изменения за последние десятилетия и прошла путь от ручных методов к автоматическим. Разбираемся, как анализировали кровь вашей бабушки и почему сейчас все делается по-другому.
Конкурс «био/мол/текст»-2019
Эта работа опубликована в номинации «Наглядно о ненаглядном» конкурса «био/мол/текст»-2019.
Генеральный спонсор конкурса и партнер номинации «Сколтех» — Центр наук о жизни Сколтеха.
Спонсор конкурса — компания «Диаэм»: крупнейший поставщик оборудования, реагентов и расходных материалов для биологических исследований и производств.
Спонсором приза зрительских симпатий выступила компания BioVitrum.
«Книжный» спонсор конкурса — «Альпина нон-фикшн»
Что будем исследовать?
Кровь — жидкая соединительная ткань организма, состоящая из плазмы и трех типов форменных элементов: эритроцитов, тромбоцитов и лейкоцитов. Лейкоциты, в свою очередь, бывают с гранулами в цитоплазме — это нейтрофилы, эозинофилы и базофилы, — и без гранул — лимфоциты и моноциты. Для того чтобы отличить патологию от нормы, нужно знать, какова концентрация клеток крови, как они выглядят и какую функцию выполняют. Пришло время вспомнить, с кем мы имеем дело.
Итак, специалисты анализируют относительное и абсолютное содержание клеток, их морфологические характеристики, распределение по объему крови и многие другие параметры. Эти показатели могут рассказать, способны ли клетки в полной мере выполнять свои функции, а если нет, то указать на причину их «неработоспособности» и послужить основой для постановки диагноза.
Вперед, в прошлое!
1965 год, 8 утра, в местной поликлинике очередь на анализы. Ваша бабушка сдала кровь, и лаборант относит ряд пробирок на исследование. Проследуем за ним в лабораторию и посмотрим, что там и как. В лаборатории мы видим врачей, склонившихся над микроскопами или работающих с пробирками. Без преувеличения можно сказать, что в молодости вашей бабушки глаз специалиста и микроскоп были основными инструментами для анализа крови. Определяют следующие основные характеристики крови: концентрация каждого типа форменных элементов, количество различных видов лейкоцитов, скорость оседания эритроцитов и концентрация гемоглобина. Помимо этого, специалист рассчитывает гематокрит — отношение объема эритроцитов к общему объему крови [5].
По порядку рас-счи-тайсь!
Первым делом производится подсчет клеток и определяется их концентрация в крови. Подсчет эритроцитов, лейкоцитов и тромбоцитов проводят в камере Горяева, названной в честь своего изобретателя. Камера Горяева — стекло с углублением и нанесенной сеткой, куда помещается разведенная в физрастворе капля крови. Для определения количества форменных элементов камеру помещают под микроскоп и считают клетки, находящиеся в больших и маленьких квадратах сетки. Для каждого типа клеток существуют свои правила подсчета и формула, по которой вычисляется их исходная концентрация с учетом разведения крови и количества квадратов сетки [6]. Изменение количества форменных элементов служит важным критерием для диагностики анемии, воспалительных и вирусных заболеваний, нарушений свертывающей системы крови и других патологических состояний [7].
Ты кто такой?
Другой этап исследования крови — дифференцировка лейкоцитов на популяции. Ей уделяется особое внимание: изменение концентрации определенного типа клеток говорит о конкретной патологии. Бактериальная инфекция, вирусы или аллергия? Лейкоциты подскажут, какой поставить диагноз и какое назначить лечение. Различение лейкоцитов доверяют только высококвалифицированному специалисту. Для начала мазок крови фиксируют в спирте и окрашивают по методу Романовского—Гимзы. Состав красителя подобран таким образом, что различные структуры клеток окрашиваются в разные цвета. Окраска зависит от способности компонентов красящей смеси связываться со структурами, содержащими кислоты или основания. Например, гемоглобин и гранулы эозинофилов приобретают красно-розовую окраску за счет эозина, а ядра форменных элементов и базофильные гранулы (имеющие сродство к основаниям) окрашиваются метиленовым синим и азуром в синий цвет [1]. Когда мазок готов, специалист в микроскоп исследует его и по внешнему виду определяет, к какому типу принадлежат разные клетки [8]. Наличие окрашенных гранул, особенности формы ядра, размер клетки — все параметры нужно держать в голове для безошибочной классификации. Обычно подсчитывали сто лейкоцитов с последующим вычислением процентного содержания, а для того чтобы не запутаться, использовали 11-клавишный счетчик [9]. Увидел в микроскоп клетку — нажми на клавишу с обозначением клетки данного типа, и в конце подсчета количество лейкоцитов каждого вида отобразится на экране счетчика [10].
Выпали в осадок
Еще одна характеристика, имеющая клиническое значение — скорость оседания эритроцитов (СОЭ). Это показатель, оценивающий скорость разделения крови на плазму и форменные элементы. В чем причина такого разделения? Макромолекулы, находящиеся в плазме крови, могут связывать одновременно два эритроцита друг с другом, в результате чего образуются «монетные столбики» [11]. Такие комплексы под действием силы тяжести оседают на дно пробирки, оставляя над собой слой прозрачной плазмы — это называется седиментацией эритроцитов. Увеличение скорости оседания эритроцитов указывает на патологические процессы, происходящие в организме, такие как воспалительные, инфекционные или онкологические заболевания [12].
Для определения СОЭ мировое признание получил метод Вестергрена, однако в России также был распространен метод Панченкова. Принцип работы методов одинаков, различаются только типы используемых пробирок. Кровь смешивают с антикоагулянтом — цитратом натрия — и помещают в капилляр — тонкую стеклянную трубочку. Эритроциты оседают на дно пробирки в течение часа, а затем измеряется высота столбика плазмы, образовавшегося сверху [13]. Таким образом получают скорость оседания эритроцитов, выраженную в мм/ч.
На вкус и цвет
Гемоглобин — красный пигмент эритроцитов, связывающий и переносящий кислород и углекислый газ. Снижение содержания гемоглобина в эритроцитах — причина анемий, сопутствующих целому ряду болезней. Концентрацию гемоглобина определяют визуально с помощью гемометра Сали. Прибор выглядит так: по центру — пробирка для анализируемой крови, а по бокам — окрашенные эталонные пробирки. В изучаемую кровь лаборант добавляет соляную кислоту — гемоглобин превращается в гемин бурого цвета. Затем кровь разводят дистиллированной водой, пока ее цвет (по субъективному мнению лаборанта!) не совпадет с цветом эталона. Уровень жидкости, получившийся в центральной пробирке, соответствует концентрации гемоглобина [14].
Как вы уже догадались, 50 лет назад при исследовании крови совершить ошибку было очень просто. Неверное определение вида лейкоцита или сбой при подсчете форменных элементов — все это приводило к неточным результатам анализа. Что было сделано для предотвращения ошибок? Вернемся в наше время и узнаем, как изучают кровь сегодня.
Времена меняются
Изменения видны уже на этапе забора крови: если раньше врач собирал кровь в несколько пробирок с реагентами, стеклянный капилляр и делал на стекле мазок, то сейчас используются совсем небольшие объемы — от 12 до 150 мкл [15] крови достаточно, чтобы исследовать ее по всем параметрам.
Заглянем в современную гематологическую лабораторию. Ого! Все заставлено оборудованием, и лаборанта что-то не видно... Может, отошел приготовить себе кофе? Не успеет! Анализ крови будет готов за минуту, и прибор выдаст результат в виде бумажной ленты с числами и аббревиатурами, за которыми скрываются всевозможные параметры.
Современные гемоанализаторы подразделяются на несколько классов, в зависимости от того, что они умеют делать. Каждый последующий класс — новая ступень эволюции — быстрее, точнее, совершеннее. Использование комбинации технологий творит чудеса: если первые анализаторы могли определять восемь параметров крови и не различали виды лейкоцитов [16], то новейшие приборы способны дифференцировать до семи популяций лейкоцитов [17] и в общей сложности исследовать более 40 характеристик крови.
Как сказал Артур Кларк: «Любая достаточно развитая технология неотличима от магии». И действительно, подробнейший результат за столь короткий срок не может не удивлять. Но вся магия основана на физических законах. И хотя такие названия, как электрический импеданс, светорассеяние и фотометрия на первый взгляд немного пугают, сейчас мы разберемся, какие принципы лежат в основе каждой технологии анализа.
Перепись населения
В середине прошлого века Уоллес Культер совершил революцию, запатентовав технологию автоматического подсчета клеток. Его именем назван один из лидеров в сфере производства гематологических анализаторов — компания Beckman Coulter [18]. Апертурно-импедансный метод (или метод Культера) основан на регистрации и анализе импульсов, возникающих при прохождении клетки через апертуру из одной емкости в другую, в каждой из которых находится электрод. Когда клетки в отверстии нет, через электролит между электродами свободно протекает ток под действием электрического поля. Чтобы направить клетки к апертуре, используют насос, откачивающий жидкость из одной емкости, в нее и устремляются форменные элементы. Проходя через апертуру, клетка вытесняет из одной емкости в другую объем электролита, равный своему объему. При этом возникает импульсное изменение сопротивление (импеданса) — мембрана клеток создает препятствие для свободного протекания тока. Одновременно меняется и сила тока, которую регистрирует счетчик. Число возникших импульсов соответствует количеству форменных элементов, а высота импульса пропорциональна объему клетки [19]. Используя информацию о количестве и объеме форменных элементов, прибор может рассчитать гематокрит, среднюю концентрацию гемоглобина в эритроците, ширину распределения клеток по объему и многие другие параметры [15].
Разделяй и властвуй
Дифференцировку лейкоцитов на популяции можно провести с помощью счетчика Культера, однако возникает проблема — различные виды лейкоцитов близки по объему и схожая амплитуда импульсов не всегда позволяет точно установить тип клетки. Как быть? Для решения этой загвоздки подбирают сочетания реагентов, которые изменяют размеры клеток в разной степени так, что становится возможным их разделить [15].
Но наиболее распространенный способ дифференцировки — проточная цитофлуометрия [20]. Метод работает следующим образом: клетки, находящиеся в потоке, поочередно облучаются лазером, а возникающие при этом сигналы светорассеяния и флуоресценции регистрируются детекторами и анализируются. Для того чтобы правильно определить принадлежность к популяции, исследуют сразу несколько параметров. Так, рассеяние света под малым углом дает информацию об относительном размере клеток, а рассеяние света под прямым углом позволяет «заглянуть» внутрь клетки и изучить ее внутреннюю структуру — наличие гранул и форму ядра. Еще один параметр — флуоресценция — способен рассказать о количестве антигенов и их виде на поверхности клеток — такое точно не определить на глаз. В отличие от ручных методов дифференцировки, анализируются не 100–200 клеток, а десятки тысяч в секунду! И к каждому лейкоциту индивидуальный подход: гидродинамическая фокусировка способствует тому, чтобы клетки выстраивались в ряд и облучались в проточной ячейке поодиночке. Результат подсчета появляется на экране в виде диаграмм рассеивания, где клетки со схожими свойствами формируют кластеры.
Выпали в осадок: 2.0
Современные приборы умеют измерять СОЭ двумя принципиально различными способами. Первый — модифицированный метод Вестергрена. Принцип работы не изменился со времен вашей бабушки, но за счет автоматизации стал более быстрым и точным. Второй — измерение кинетики агрегации эритроцитов оптическим методом [21]. Происходит это так: в кровь добавляется антикоагулянт, пробирки с кровью помещаются в ротор, где происходит автоматическое перемешивание. После этого анализатор отбирает часть крови в микрокапилляр, где она ускоряется и резко останавливается (так называемый метод «остановленной струи»). Остановка вызывает агрегацию эритроцитов, и в этот момент с помощью фотометра определяется оптическая плотность крови — чем плотнее будут расположены эритроциты, тем меньше света пройдет через пробу. Прибор использует полученные данные и строит кривую седиментации — ее анализ позволит представить результат в привычных единицах измерения СОЭ [22], [23].
Фото на память
Для определения концентрации гемоглобина Международный комитет по стандартизации в гематологии рекомендует метгемоглобин-цианидный метод. Однако сейчас повсеместно применяется иное исследование, не использующее токсичный цианид. Знакомьтесь, SLS-метод. Назван он по основному реагенту — лауритилсульфату натрия. SLS разрушает мембраны эритроцитов, после чего связывается с группами гема и образует стабильные комплексные соединения. Они анализируется фотометрически — через пробу крови пропускают свет лазера. Комплексные соединения поглощают часть света, в результате этого интенсивность выходящего светового потока ослабевает. Затухание измеряют с помощью фотодатчика и полученные данные преобразуют в единицы концентрации гемоглобина [24].
Это не предел
Итак, в процессе нашего экскурса мы посмотрели, как осуществлялся анализ крови во времена наших бабушек и как это делается сегодня. Выяснили, что в настоящее время благодаря переходу на автоматические методы существенно повысилась скорость получения результатов, а главное, их точность! Следует отметить, что современная аппаратная диагностика позволяет решить значительно больше задач, чем это было возможно пару поколений назад, но и это — тоже не предел!
Литература
- Быков В.Л. Цитология и общая гистология. СПб.: «Сотис», 2002. —237 с.;
- Кем быть? Как гемопоэтическая стволовая клетка выбирает профессию;
- Иммунитет: борьба с чужими и… своими;
- Тиц Н.У. Энциклопедия клинических лабораторных тестов. М.: «Лабинформ», 1997. — 960 с.;
- DeMoranville V.E. and Best M.A. Complete blood count. Gale Encyclopedia of Surgery;
- Черкесова Д.У. и Рабаданова А.И. Определение количества форменных элементов крови // Руководство к практическим занятиям по физиологии человека и животных (физиология крови и кровообращения). Махачкала: Издательство ДГУ, 2016;
- Павлова В.Ю. (2016). Возможности исследования показателей общего анализа крови на современных гематологических анализаторах. «Фундаментальная и клиническая медицина». 1, 98–108;
- Лейкоцитарная формула // Большая Медицинская Энциклопедия (БМЭ) / Петровский Б.В. М.: «Советская энциклопедия», 1974–1989;
- Перечень унифицированных методов клинических лабораторных исследований. (1979). Приложение №1 к приказу Министерства здравоохранения СССР №1175;
- Зафранская М.М., Романовская Т.Р., Коктыш И.В., Мельникова Я.И., Кондратович Т.В. Иммунология: лабораторный практикум для студентов 3 курса. Минск: МГЭУ им. А. Д. Сахарова, 2016;
- Сидорко И.В. Количественные характеристики агрегационного взаимодействия эритроцитов и их применение в клинике: автореф. дис. ... канд. мед. наук. — Москва, 1997. — 26 с.;
- Кишкун А.А. Клиническая лабораторная диагностика: учебное пособие для медицинских сестер. М.: «ГЭОТАР-Медиа», 2015. — 720 с.;
- Новые лабораторные технологии для определения скорости оседания эритроцитов. (2013 ). «Адвенсум»;
- Гемоглобинометрия // Большая Медицинская Энциклопедия (БМЭ) / Петровский Б.В. М.: «Советская энциклопедия», 1974–1989;
- Гематологические анализаторы. Интерпретация анализа крови: методические рекомендации. (2007). Минздрав РФ;
- Шибанов А.Н. и Дылдин Д.Р. (2009). Выбираем гематологический анализатор (часть 1). «Юнимед»;
- Gaurav Chhabra. (2018). Automated hematology analyzers: Recent trends and applications. J Lab Physicians. 10, 15;
- M GRAHAM. (2003). The Coulter principle: foundation of an industry. Journal of the Association for Laboratory Automation. 8, 72-81;
- Принцип Культера (1954–1955). Beckman Coulter Life Sciences;
- 12 методов в картинках: проточная цитофлуориметрия;
- A. Kratz, M. Plebani, M. Peng, Y.K. Lee, R. McCafferty, et. al.. (2017). ICSH recommendations for modified and alternate methods measuring the erythrocyte sedimentation rate. Int J Lab Hem. 39, 448-457;
- de Jonge N., Sewkaransing I., Slinger J., Rijsdijk J.J. (2000). Erythrocyte sedimentation rate by the test-1 analyzer. Clin. Chem. 46 (6 Pt 1), 881–882;
- Mujdat Aytekin. (2018). The Current Use and the Evolution of Erythrocyte Sedimentation Rate Measurement. Middle Black Sea Journal of Health Science. 17-23;
- Iwao Oshiro, Toru Takenaka, Jiro Maeda. (1982). New method for hemoglobin determination by using sodium lauryl sulfate (SLS). Clinical Biochemistry. 15, 83-88.