Подписаться
Биомолекула

Гонки вакцин 2020

Гонки вакцин 2020

  • 5461
  • 2,7
  • 0
  • 6
Добавить в избранное print
Обзор

Вакцины от SARS-CoV-2 разрабатываются при помощи самых разных подходов, о которых мы и расскажем

Постер на конкурс «Био/Мол/Текст»: Несмотря на то, что пандемия нового коронавируса застигла человечество врасплох, ученые всего мира быстро начали разработку подходящих вакцин. Наступил значительный перелом в иммунологии: многие из созданных вакцин основаны на новых платформах, поэтому эта эпидемия станет хорошей проверкой для свежих многообещающих подходов. На конец января 2021 года 67 вакцин проходили клинические испытания, а еще как минимум 89 — доклинические. Данный графический конспект поможет разобраться во всем разнообразии существующих платформ, но выбор самой лучшей платформы или тем более выбор самой лучшей вакцины не является его целью.

Конкурс «Био/Мол/Текст»-2020/2021

Победитель конкурса «Био/Мол/Текст»-2020/2021Эта работа заняла второе место в номинации «Наглядно о ненаглядном» конкурса «Био/Мол/Текст»-2020/2021.


BiotechClub

Генеральный партнер конкурса — ежегодная биотехнологическая конференция BiotechClub, организованная международной инновационной биотехнологической компанией BIOCAD.


SkyGen

Спонсор конкурса — компания SkyGen: передовой дистрибьютор продукции для life science на российском рынке.


«Диа-М»

Спонсор конкурса — компания «Диаэм»: крупнейший поставщик оборудования, реагентов и расходных материалов для биологических исследований и производств.


«Альпина нон-фикшн»

«Книжный» спонсор конкурса — «Альпина нон-фикшн»

Постер можно скачать в формате pdf по ссылке.

Гонки вакцин 2020
Гонки вакцин 2020
Гонки вакцин 2020
Гонки вакцин 2020
Гонки вакцин 2020
Гонки вакцин 2020
Гонки вакцин 2020
Гонки вакцин 2020
Гонки вакцин 2020
Гонки вакцин 2020
Гонки вакцин 2020
Гонки вакцин 2020
Гонки вакцин 2020
Гонки вакцин 2020

Литература

  1. Разработка вакцин: чем и как имитировать болезнь?;
  2. История вакцинации;
  3. Вакцины против коронавируса: последние новости;
  4. Wikipedia: Maurice Brodie;
  5. Wikipedia: Alexander Glenny;
  6. Руководство по проведению клинических исследований лекарственных средств / Под ред. А.Н. Миронова. М.: «Гриф и К», 2013. — 244 с.;
  7. Coronavirus global map: tracking the global outbreak. (2021). The New York Times;
  8. Zimmer C., Corum J., Wee S.-L. (2021). Coronavirus vaccine tracker. The New York Times;
  9. Consensus document on the epidemiology of severe acute respiratory syndrome (‎SARS)‎. (2003). WHO;
  10. A pilot study of a dendritic cell vaccine in HIV-1 infected subjects (PARC002). (2016). Clinical Trials;
  11. Safety and immunity of Covid-19 aAPC vaccine. (2020). Clinical Trials;
  12. Abbas A., Lichtman A., Pillai S. Basic immunology: functions and disorders of the immune system (5th Edition). Elsevier, 2015. — 352 p.;
  13. Yinon M Bar-On, Avi Flamholz, Rob Phillips, Ron Milo. (2020). SARS-CoV-2 (COVID-19) by the numbers. eLife. 9;
  14. Benson Yee Hin Cheng, Emilio Ortiz-Riaño, Aitor Nogales, Juan Carlos de la Torre, Luis Martínez-Sobrido. (2015). Development of Live-Attenuated Arenavirus Vaccines Based on Codon Deoptimization. J. Virol.. 89, 3523-3533;
  15. Gerardo Chowell, Fatima Abdirizak, Sunmi Lee, Jonggul Lee, Eunok Jung, et. al.. (2015). Transmission characteristics of MERS and SARS in the healthcare setting: a comparative study. BMC Med. 13;
  16. Gerardo Chowell, Seth Blumberg, Lone Simonsen, Mark A. Miller, Cécile Viboud. (2014). Synthesizing data and models for the spread of MERS-CoV, 2013: Key role of index cases and hospital transmission. Epidemics. 9, 40-51;
  17. Guobao Feng, Lu Liu, Wanzhao Cui, Fang Wang. (2020). Electron beam irradiation on novel coronavirus (COVID-19): A Monte–Carlo simulation. Chinese Phys. B. 29, 048703;
  18. H. J. Hearn, W. T. Soper, W. S. Miller. (1965). Loss in Virulence of Yellow Fever Virus Serially Passed in HeLa Cells. Experimental Biology and Medicine. 119, 319-322;
  19. Natalia G. Herrera, Nicholas C. Morano, Alev Celikgil, George I. Georgiev, Ryan J. Malonis, et. al. Characterization of the SARS-CoV-2 S Protein: Biophysical, Biochemical, Structural, and Antigenic Analysis — Cold Spring Harbor Laboratory;
  20. Dominika Hobernik, Matthias Bros. (2018). DNA Vaccines—How Far From Clinical Use?. IJMS. 19, 3605;
  21. Susanne H Hodgson, Kushal Mansatta, Garry Mallett, Victoria Harris, Katherine R W Emary, Andrew J Pollard. (2021). What defines an efficacious COVID-19 vaccine? A review of the challenges assessing the clinical efficacy of vaccines against SARS-CoV-2. The Lancet Infectious Diseases. 21, e26-e35;
  22. Yuan Huang, Chan Yang, Xin-feng Xu, Wei Xu, Shu-wen Liu. (2020). Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin. 41, 1141-1149;
  23. Elmira T. Isakbaeva, Nino Khetsuriani, R. Suzanne Beard, Angela Peck, Dean Erdman, et. al.. (2004). SARS-associated Coronavirus Transmission, United States. Emerg. Infect. Dis.. 10, 225-231;
  24. D. A. Jackson, R. H. Symons, P. Berg. (1972). Biochemical Method for Inserting New Genetic Information into DNA of Simian Virus 40: Circular SV40 DNA Molecules Containing Lambda Phage Genes and the Galactose Operon of Escherichia coli. Proceedings of the National Academy of Sciences. 69, 2904-2909;
  25. Mangalakumari Jeyanathan, Sam Afkhami, Fiona Smaill, Matthew S. Miller, Brian D. Lichty, Zhou Xing. (2020). Immunological considerations for COVID-19 vaccine strategies. Nat Rev Immunol. 20, 615-632;
  26. Young Chan Kim, Barbara Dema, Arturo Reyes-Sandoval. (2020). COVID-19 vaccines: breaking record times to first-in-human trials. npj Vaccines. 5;
  27. Yizhar Lavner, Daniel Kotlar. (2005). Codon bias as a factor in regulating expression via translation rate in the human genome. Gene. 345, 127-138;
  28. H. Lei, Y. Li, S. Xiao, C.-H. Lin, S. L. Norris, et. al.. (2018). Routes of transmission of influenza A H1N1, SARS CoV, and norovirus in air cabin: Comparative analyses. Indoor Air. 28, 394-403;
  29. Char Leung. (2020). The difference in the incubation period of 2019 novel coronavirus (SARS-CoV-2) infection between travelers to Hubei and nontravelers: The need for a longer quarantine period. Infect. Control Hosp. Epidemiol.. 41, 594-596;
  30. M. A. Liu. (2003). DNA vaccines: a review. J Intern Med. 253, 402-410;
  31. Andreas Mackensen, Norbert Meidenbauer, Sandra Vogl, Monika Laumer, Jana Berger, Reinhard Andreesen. (2006). Phase I Study of Adoptive T-Cell Therapy Using Antigen-Specific CD8+ T Cells for the Treatment of Patients With Metastatic Melanoma. JCO. 24, 5060-5069;
  32. Jamie FS Mann, Reinaldo Acevedo, Judith del Campo, Oliver Pérez, Valerie A Ferro. (2009). Delivery systems: a vaccine strategy for overcoming mucosal tolerance?. Expert Review of Vaccines. 8, 103-112;
  33. Frédéric Martinon, Sivadasan Krishnan, Gerlinde Lenzen, Rémy Magné, Elisabeth Gomard, et. al.. (1993). Induction of virus-specific cytotoxic T lymphocytesin vivo by liposome-entrapped mRNA. Eur. J. Immunol.. 23, 1719-1722;
  34. Mona O. Mohsen, Lisha Zha, Gustavo Cabral-Miranda, Martin F. Bachmann. (2017). Major findings and recent advances in virus–like particle (VLP)-based vaccines. Seminars in Immunology. 34, 123-132;
  35. Murphy K. and Weaver C. Janeway’s immunobiology (9th Edition). W.W. Norton & Company, 2016. — 924 p.;
  36. Ji-Eun Park, Soyoung Jung, Aeran Kim, Ji-Eun Park. (2018). MERS transmission and risk factors: a systematic review. BMC Public Health. 18;
  37. Linda J. Saif. (2020). VACCINES FOR COVID-19: PERSPECTIVES, PROSPECTS, AND CHALLENGES BASED ON CANDIDATE SARS, MERS, AND ANIMAL CORONAVIRUS VACCINES. EMJ;
  38. Alan Sariol, Stanley Perlman. (2020). Lessons for COVID-19 Immunity from Other Coronavirus Infections. Immunity. 53, 248-263;
  39. Thomas Schlake, Andreas Thess, Mariola Fotin-Mleczek, Karl-Josef Kallen. (2012). Developing mRNA-vaccine technologies. RNA Biology. 9, 1319-1330;
  40. Eunha Shim, Alison P. Galvani. (2012). Distinguishing vaccine efficacy and effectiveness. Vaccine. 30, 6700-6705;
  41. Melissa S. Stockwell, Annika M. Hofstetter, Nathalie DuRivage, Angela Barrett, Nadira Fernandez, et. al.. (2015). Text Message Reminders for Second Dose of Influenza Vaccine: A Randomized Controlled Trial. Pediatrics. 135, e83-e91;
  42. J. S. Tregoning, E. S. Brown, H. M. Cheeseman, K. E. Flight, S. L. Higham, et. al.. (2020). Vaccines for COVID‐19. Clin. Exp. Immunol.. 202, 162-192;
  43. De-chu Tang, Michael DeVit, Stephen A. Johnston. (1992). Genetic immunization is a simple method for eliciting an immune response. Nature. 356, 152-154;
  44. J. S. Tregoning, E. S. Brown, H. M. Cheeseman, K. E. Flight, S. L. Higham, et. al.. (2020). Vaccines for COVID‐19. Clin. Exp. Immunol.. 202, 162-192;
  45. A. R. Tuite, A. L. Greer, M. Whelan, A.-L. Winter, B. Lee, et. al.. (2010). Estimated epidemiologic parameters and morbidity associated with pandemic H1N1 influenza. Canadian Medical Association Journal. 182, 131-136;
  46. Brian J Ward, Philipe Gobeil, Annie Séguin, Judith Atkins, Iohann Boulay, et. al. Phase 1 trial of a Candidate Recombinant Virus-Like Particle Vaccine for Covid-19 Disease Produced in Plants — Cold Spring Harbor Laboratory;
  47. Gizachew Tadesse Wassie, Abebaw Gedef Azene, Getasew Mulat Bantie, Getenet Dessie, Abiba Mihret Aragaw. (2020). Incubation Period of Severe Acute Respiratory Syndrome Novel Coronavirus 2 that Causes Coronavirus Disease 2019: A Systematic Review and Meta-Analysis. Current Therapeutic Research. 93, 100607;
  48. Benjamin Weide, Steve Pascolo, Birgit Scheel, Evelyna Derhovanessian, Annette Pflugfelder, et. al.. (2009). Direct Injection of Protamine-protected mRNA: Results of a Phase 1/2 Vaccination Trial in Metastatic Melanoma Patients. Journal of Immunotherapy. 32, 498-507.

Комментарии