https://biolabmix.ru/catalog/rna-transcription-mrna/?erid=LdtCKWnpq
Подписаться
Оглавление
Биомолекула

Молекулярная биология

Молекулярная биология

  • 21108
  • 4,1
  • 4
  • 17
Добавить в избранное print
Обзор

Молекулярный биолог Пробирочка

Комикс на конкурс «био/мол/текст»: Сегодня молекулярный биолог Пробирочка проведет вас по миру удивительной науки — молекулярной биологии! Мы начнем с исторического экскурса по этапам ее развития, опишем главные открытия и эксперименты, начиная с 1933 года. А также наглядно расскажем о главных методах молекулярной биологии, которые позволили манипулировать генами, изменять и выделять их. Появление этих методов послужило сильным толчком в развитии молекулярной биологии. А еще вспомним о роли биотехнологии и затронем одну из популярнейших тем в этой области — редактирование генома с помощью CRISPR/Cas-систем.

Конкурс «био/мол/текст»-2019

Эта работа опубликована в номинации «Наглядно о ненаглядном» конкурса «био/мол/текст»-2019.


Центр наук о жизни Сколтеха

Генеральный спонсор конкурса и партнер номинации «Сколтех» — Центр наук о жизни Сколтеха.


«Диа-М»

Спонсор конкурса — компания «Диаэм»: крупнейший поставщик оборудования, реагентов и расходных материалов для биологических исследований и производств.


BioVitrum

Спонсором приза зрительских симпатий выступила компания BioVitrum.


«Альпина нон-фикшн»

«Книжный» спонсор конкурса — «Альпина нон-фикшн»

1. Введение. Сущность молекулярной биологии

Молекулярная биология

Молекулярная биология изучает основы жизнедеятельности организмов на уровне макромолекул. Целью молекулярной биологии является установление роли и механизмов функционирования этих макромолекул на основе знаний об их структурах и свойствах.

Исторически молекулярная биология сформировалась в ходе развития направлений биохимии, изучающих нуклеиновые кислоты и белки. В то время как биохимия исследует обмен веществ, химический состав живых клеток, организмов и осуществляемые в них химические процессы, молекулярная биология главное внимание сосредоточивает на изучении механизмов передачи, воспроизведения и хранения генетической информации.

А объектом изучения молекулярной биологии являются сами нуклеиновые кислоты — дезоксирибонуклеиновые (ДНК), рибонуклеиновые (РНК) — и белки, а также их макромолекулярные комплексы — хромосомы, рибосомы, мультиферментные системы, обеспечивающие биосинтез белков и нуклеиновых кислот. Молекулярная биология также граничит по объектам исследования и частично совпадает с молекулярной генетикой, вирусологией, биохимией и рядом других смежных биологических наук.

2. Исторический экскурс по этапам развития молекулярной биологии

Молекулярная биология

Как отдельное направление биохимии, молекулярная биология начала развиваться в 30-х годах прошлого века. Еще тогда возникла необходимость понимания феномена жизни на молекулярном уровне для исследований процессов передачи и хранения генетической информации. Как раз в то время установилась задача молекулярной биологии в изучении свойств, структуры и взаимодействия белков и нуклеиновых кислот.

Впервые термин «молекулярная биология» применил в 1933 году Уильям Астбери в ходе исследования фибриллярных белков (коллагена, фибрина крови, сократительных белков мышц). Астбери изучал связь между молекулярной структурой и биологическими, физическими особенностями данных белков. На первых порах возникновения молекулярной биологии РНК считалась составляющей только растений и грибов, а ДНК — только животных. А в 1935 году открытие ДНК гороха Андреем Белозерским привело к установлению факта, что ДНК содержится в каждой живой клетке.

В 1940 году колоссальным достижением стало установление Джорджем Бидлом и Эдуардом Тэйтемом причинно-следственной связи между генами и белками. Гипотеза ученых «Один ген — один фермент» легла в основу концепции о том, что специфичное строение белка регулируется генами. Полагается, что генетическая информация закодирована специальной последовательностью нуклеотидов в ДНК, которая регулирует первичную структуру белков. Позже было доказано, что многие белки имеют четвертичную структуру. В образовании таких структур принимают участие различные пептидные цепи. Исходя из этого, положение о связи между геном и ферментом было несколько преобразовано, и теперь звучит как «Один ген — один полипептид».

В 1944 году американский биолог Освальд Эвери с коллегами (Колином Маклеодом и Маклином Маккарти) доказал, что веществом, вызывающим трансформацию бактерий, является ДНК, а не белки. Эксперимент послужил доказательством роли ДНК в передаче наследственной информации, перечеркнув устаревшие знания о белковой природе генов.

Молекулярная биология

В начале 50-х годов Фредерик Сенгер показал, что белковая цепь — уникальная последовательность аминокислотных остатков. В 1951 и 1952 годах ученый определил полную последовательность двух полипептидных цепей — бычьего инсулина В (30 аминокислотных остатков) и А (21 аминокислотный остаток) соответственно.

Примерно в то же время, в 1951–1953 гг., Эрвин Чаргафф сформулировал правила о соотношении азотистых оснований в ДНК. Согласно правилу, вне зависимости от видовых различий живых организмов в их ДНК количество аденина (A) равно количеству тимина (T), а количество гуанина (G) равно количеству цитозина (C).

В 1953 году доказана генетическая роль ДНК. Джеймс Уотсон и Фрэнсис Крик на основе рентгенограммы ДНК, полученной Розалинд Франклин и Морисом Уилкинсом, установили пространственную структуру ДНК и выдвинули подтвердившееся позднее предположение о механизме ее репликации (удвоении), лежащем в основе наследственности.

Молекулярная биология

1958 год — формирование центральной догмы молекулярной биологии Фрэнсисом Криком: перенос генетической информации идет в направлении ДНК → РНК → белок.

Суть догмы состоит в том, что в клетках имеется определенный направленный поток информации от ДНК, которая, в свою очередь, представляет собой исходный генетический текст, состоящий из четырех букв: A, T, G и C. Он записан в двойной спирали ДНК в виде последовательностей этих букв — нуклеотидов.

Этот текст транскрибируется. А сам процесс называется транскрипцией. В ходе данного процесса происходит синтез РНК, которая является идентичной генетическому тексту, но с отличием: в РНК вместо T стоит U (урацил).

Данная РНК называется информационной РНК (иРНК), или матричной (мРНК). Трансляция иРНК осуществляется при помощи генетического кода в виде триплетных последовательностей нуклеотидов. В ходе этого процесса происходит перевод текста нуклеиновых кислот ДНК и РНК из четырехбуквенного текста в двадцатибуквенный текст аминокислот.

Природных аминокислот существует всего двадцать, а букв в тексте нуклеиновых кислот четыре. Из-за этого происходит перевод из четырехбуквенного алфавита в двадцатибуквенный посредством генетического кода, в котором каждым трем нуклеотидам соответствует какая-либо аминокислота. Так можно сделать из четырех букв целые 64 трехбуквенные комбинации, притом что аминокислот 20. Из этого следует, что генетический код обязательно должен иметь свойство вырожденности. Однако в то время генетический код не был известен, к тому же его даже не начали расшифровывать, но Крик уже сформулировал свою центральную догму.

Тем не менее была уверенность в том, что код должен существовать. К тому времени было доказано, что этот код обладает триплетностью. Это означает, что конкретно три буквы в нуклеиновых кислотах (кодóны) отвечают какой-либо аминокислоте. Этих кодонов всего 64, они кодируют 20 аминокислот. Это означает, что каждой аминокислоте отвечает сразу несколько кодонов.

Таким образом, можно сделать вывод, что центральная догма является постулатом, который гласит о том, что в клетке происходит направленный поток информации: ДНК → РНК → белок. Крик сделал акцент на главном содержании центральной догмы: обратного потока информации происходить не может, белок не способен изменять генетическую информацию.

В этом и заключается основной смысл центральной догмы: белок не в состоянии изменять и преобразовывать информацию в ДНК (или РНК), поток всегда идет лишь в одну сторону.

Спустя время после этого был открыт новый фермент, который не был известен во времена формулировки центральной догмы, — обратная транскриптаза, которая синтезирует ДНК по РНК. Фермент был открыт в вирусах, у которых генетическая информация закодирована в РНК, а не в ДНК. Такие вирусы называют ретровирусами. Они имеют вирусную капсулу с заключенными в нее РНК и специальным ферментом. Фермент и есть обратная транскриптаза, которая синтезирует ДНК по матрице этой вирусной РНК, а эта ДНК потом уже служит генетическим материалом для дальнейшего развития вируса в клетке.

Конечно, данное открытие вызвало большой шок и множество споров среди молекулярных биологов, поскольку считалось, что, исходя из центральной догмы, этого быть не может. Однако Крик сразу объяснил, что он никогда не говорил, что это невозможно. Он говорил лишь то, что никогда не может происходить поток информации от белка к нуклеиновым кислотам, а уже внутри нуклеиновых кислот любого рода процессы вполне возможны: синтез ДНК на ДНК, ДНК на РНК, РНК на ДНК и РНК на РНК.

После формулирования центральной догмы по-прежнему оставался ряд вопросов: как алфавит из четырех нуклеотидов, составляющих ДНК (или РНК), кодирует 20-буквенный алфавит аминокислот, из которых состоят белки? В чем состоит сущность генетического кода?

Первые идеи о существовании генетического кода сформулировали Александр Даунс (1952 г.) и Георгий Гамов (1954 г.). Ученые показали, что последовательность нуклеотидов должна включать в себя не менее трех звеньев. Позднее было доказано, что такая последовательность состоит из трех нуклеотидов, названных кодоном (триплетом). Тем не менее вопрос о том, какие нуклеотиды ответственны за включение какой аминокислоты в белковую молекулу, оставался открытым до 1961 года.

Молекулярная биология

А в 1961 году Маршалл Ниренберг вместе с Генрих Маттеи использовали систему для трансляции in vitro. В роли матрицы взяли олигонуклеотид. В его состав входили только остатки урацила, а пептид, синтезированный с него, включал только аминокислоту фенилаланин. Таким образом впервые было установлено значение кодона: кодон UUU кодирует фенилаланин. Поле них Хар Корана выяснил, что последовательность нуклеотидов UCUCUCUCUCUC кодирует набор аминокислот серин—лейцин—серин—лейцин. По большому счету, благодаря работам Ниренберга и Кораны, к 1965 году генетический код был полностью разгадан. Выяснилось, что каждый триплет кодирует определенную аминокислоту. А порядок кодонов определяет порядок аминокислот в белке.

Главные принципы функционирования белков и нуклеиновых кислот сформулировали к началу 70-х годов. Было зафиксировано, что синтез белков и нуклеиновых кислот осуществляется по матричному механизму. Молекула-матрица несет закодированную информацию о последовательности аминокислот или нуклеотидов. При репликации или транскрипции матрицей служит ДНК, при трансляции и обратной транскрипции — иРНК.

Так были созданы предпосылки для формирования направлений молекулярной биологии, в том числе и генной инженерии. А в 1972 году Пол Берг с коллегами разработал технологию молекулярного клонирования. Ученые получили первую рекомбинантную ДНК in vitro. Эти выдающиеся открытия легли в основу нового направления молекулярной биологии, а 1972 год с тех пор считается датой рождения генной инженерии.

Молекулярная биология
Молекулярная биология
Молекулярная биология

3. Методы молекулярной биологии

Молекулярная биология

Колоссальные успехи в изучении нуклеиновых кислот, строении ДНК и биосинтеза белка привели к созданию ряда методов, имеющих большое значение в медицине, сельском хозяйстве и науке в целом.

После изучения генетического кода и основных принципов хранения, передачи и реализации наследственной информации для дальнейшего развития молекулярной биологии стали необходимы специальные методы. Эти методы позволили бы проводить манипуляции с генами, изменять и выделять их.

Появление таких методов произошло в 1970–1980-х годах. Это дало огромный толчок развитию молекулярной биологии. В первую очередь, эти методы напрямую связаны с получением генов и их внедрением в клетки других организмов, а еще с возможностью определения последовательности нуклеотидов в генах.

3.1. Электрофорез ДНК

Молекулярная биология

Электрофорез ДНК является базовым методом работы с ДНК. Электрофорез ДНК применяется вместе почти со всеми остальными методами для выделения нужных молекул и дальнейшего анализа результатов. Сам метод электрофореза в геле используется для разделения фрагментов ДНК по длине.

Молекулярная биология
Молекулярная биология

Предварительно или после электрофореза гель обрабатывается красителями, которые способны связаться с ДНК. Красители флуоресцируют в ультрафиолетовом свете, получается картина из полос в геле. Для определения длин фрагментов ДНК их можно сравнить с мáркерами — наборами фрагментов стандартных длин, которые наносятся на тот же гель.

Молекулярная биология
Молекулярная биология

Вообще, важнейшими инструментами для работы с молекулой ДНК являются ферменты, осуществляющие ряд превращений ДНК в клетках: ДНК-полимеразы, ДНК-лигазы и рестриктазы (рестрикционные эндонуклеазы).

Молекулярная биология
Молекулярная биология
Молекулярная биология

3.2. ПЦР

В основе метода лежит способность ДНК-полимераз достраивать вторую нить ДНК по комплементарной нити так же, как при процессе репликации ДНК в клетке.

Молекулярная биология
Молекулярная биология
Молекулярная биология

3.3. Секвенирование ДНК

Стремительное развитие метода секвенирования позволяет эффективно определять особенности исследуемого организма на уровне его генома. Главным преимуществом таких геномных и постгеномных технологий является увеличение возможностей исследования и изучения генетической природы заболеваний человека, для того чтобы заранее принять необходимые меры и избежать болезней.

За счет крупных исследований возможно получать необходимые данные о различных генетических характеристиках разных групп людей, тем самым развивая методы медицины. Из-за этого выявление генетической расположенности к различным заболеваниям сегодня пользуется огромной популярностью.

Подобные методы широко применимы практически во всем мире, в том числе и в России. Из-за научного прогресса происходит внедрение таких методов в медицинские исследования и медицинскую практику в целом.

Молекулярная биология
Молекулярная биология
Молекулярная биология

4. Биотехнология

Молекулярная биология

Биотехнология — дисциплина, изучающая возможности использования живых организмов или их систем для решения технологических задач, а еще создания живых организмов с нужными свойствами путем генной инженерии. Биотехнология применяет методы химии, микробиологии, биохимии и, конечно же, молекулярной биологии.

Основные направления развития биотехнологии (принципы биотехнологических процессов внедряют в производство всех отраслей):

  1. Создание и производство новых видов продуктов питания и кормов для животных.
  2. Получение и изучение новых штаммов микроорганизмов.
  3. Выведение новых сортов растений, а также создание средств для защиты растений от болезней и вредителей.
  4. Применение методов биотехнологии для нужд экологии. Такие методы биотехнологии используют для переработки утилизации отходов, очистки сточных вод, отработанного воздуха и санации почв.
  5. Изготовление витаминов, гормонов, ферментов, сывороток для нужд медицины. Биотехнологи разрабатывают усовершенствованные лекарственные препараты, которые ранее считались неизлечимыми.

Крупным достижением биотехнологии является генная инженерия.

Генная инженерия — совокупность технологий и методов получения рекомбинантных молекул РНК и ДНК, выделения отдельных генов из клеток, осуществление манипуляций с генами и введение их в другие организмы (бактерий, дрожжи, млекопитающих). Такие организмы способны производить конечные продукты с нужными, измененными свойствами.

Методы генной инженерии направлены на конструирование новых, ранее не существовавших сочетаний генов в природе.

Говоря о достижениях генной инженерии, невозможно не затронуть тему клонирования. Клонирование — это один из методов биотехнологии, применяемый для получения идентичных потомков различных организмов при помощи бесполого размножения.

Иными словами, клонирование можно представить как процесс создания генетически идентичных копий организма или клетки. А клонированные организмы похожи или вовсе идентичны не только по внешним признакам, но и по генетическому содержанию.

Небезызвестная овечка Долли в 1966 году стала первым клонированным млекопитающим. Она была получена за счет пересадки ядра соматической клетки в цитоплазму яйцеклетки. Долли являлась генетической копией овцы-донора ядра клетки. В естественных условиях особь формируется из одной оплодотворенной яйцеклетки, получив по половине генетического материала от двух родителей. Однако при клонировании генетический материал взяли из клетки одной особи. Сначала из зиготы удалили ядро, в котором находится сама ДНК. После чего извлекли ядро из клетки взрослой особи овцы и имплантировали его в ту лишенную ядра зиготу, а затем ее пересадили в матку взрослой особи и предоставили возможность для роста и развития.

Молекулярная биология

Тем не менее не все попытки клонирования оказывались удачными. Параллельно с клонированием Долли эксперимент по замене ДНК был проведен на 273 других яйцеклетках. Но только в одном случае смогло полноценно развиться и вырасти живое взрослое животное. После Долли ученые пробовали клонировать и другие виды млекопитающих.

Молекулярная биология

Одним их видов генной инженерии является редактирование генома.

Инструмент CRISPR/Cas базируется на элементе иммунной защитной системы бактерий, который ученые приспособили для внедрения каких-либо изменений в ДНК животных или растений.

Молекулярная биология
Молекулярная биология

CRISPR/Cas является одним из биотехнологических методов манипулирования отдельными генами в клетках. Существует огромное множество применений такой технологии. CRISPR/Cas позволяет исследователям выяснять функцию разных генов. Для этого нужно просто вырезать исследуемый ген из ДНК и изучить, какие функции организма были затронуты.

Некоторые практические применения системы:

  1. Сельское хозяйство. За счет CRISPR/Cas-систем можно усовершенствовать сельскохозяйственные культуры. А именно, сделать их более вкусными и питательными, а также устойчивыми к жаре. Возможно наделить растения и другими свойствами: к примеру, вырезать из орехов (арахиса или фундука) ген аллергена.
  2. Медицина, наследственные заболевания. У ученых есть цель применять CRISPR/Cas для удаления из человеческого генома мутаций, из-за которых могут развиваться заболевания, такие, как серповидноклеточная анемия и др. В теории, за счет CRISPR/Cas можно останавливать развитие ВИЧ.
  3. Генный драйв. CRISPR/Cas может изменять не только геном отдельного животного или растения, но также и генофонд вида. Данная концепция известна как «генный драйв». Всякий живой организм передает своему потомству половину генов. Но использование CRISPR/Cas может повышать вероятность передачи генов до 100%. Это важно для того, чтобы нужный признак быстрее распространился во всей популяции.

Швейцарские ученые значительно усовершенствовали и модернизировали метод редактирования генома CRISPR/Cas, тем самым расширив его возможности. Тем не менее ученые могли модифицировать только один ген за раз, используя CRISPR/Cas-систему. Но сейчас исследователи Швейцарской высшей технической школы Цюриха разработали метод, с помощью которого возможно одновременно модифицировать 25 генов в клетке.

Для новейшей методики специалисты использовали фермент Cas12a, а не фермент Cas9, применяемый в большинстве методов CRISPR/Cas.

Литература

  1. Учёные произвели революцию в редактировании генома. (2019). «Наука»;
  2. Редактирование генома с CRISPR/Cas9. (2016). «Постнаука»;
  3. Уотсон Д. ДНК: История генетической революции. СПб: «Питер», 2019;
  4. Стент Г. и Калиндар Р. Молекулярная генетика. М.: «Мир», 1982;
  5. Элементы: «Молекулярное клонирование, или Как поместить в клетку чужеродный генетический материал»;
  6. Инсулин — это первый белок, для которого была установлена аминокислотная последовательность. «Научная библиотека»;
  7. Электрофорез ДНК. Howling Pixel;
  8. 12 методов в картинках: генная инженерия. Часть II: инструменты и техники;
  9. Великий рекомбинатор;
  10. Флуоресцентные белки: разнообразнее, чем вы думали!;
  11. 12 методов в картинках: секвенирование нуклеиновых кислот;
  12. Биотехнология. Генная инженерия;
  13. Кудрявцев Н. (2018). Генетики впервые в истории успешно клонировали обезьян. «Популярная механика»;
  14. Николенко С. (2012). Геномика: постановка задачи и методы секвенирования. «Постнаука».
https://siriusbiotech.ru//?erid=2VfnxwBZiac

Комментарии