Подписаться
Анастасия Мамаева

Анастасия Мамаева 0,0

  • Модельные организмы
    Модельные организмы: арабидопсис
    Обзор
    Биология Гормоны растений
    Модельные организмы: арабидопсис
    4166 2,0
    Какой же календарь земледельца научного работника, преподавателя или просто любителя науки может обойтись без растений, тем более в апреле? И мы в этот весенний месяц представляем вашему вниманию скромный, но чрезвычайно полезный арабидопсис, давно и прочно завоевавший стеллажи климатических камер, чашки Петри в лабораториях, а также сердца не только физиологов растений, но и генетиков, молекулярных биологов, молекулярных систематиков, биологов развития и, конечно же, генных инженеров!
    0 Елена Лабунская 06 апреля 2020
  • Модельные организмы
    Модельные организмы: грибы
    Обзор
    Биология Микробиология Цитология
    Модельные организмы: грибы
    3636 1,6
    Одомашненный одноклеточный гриб — пекарские дрожжи Saccharomyces cerevisiae — внес и еще внесет свой вклад в развитие биохимии, генетики и молекулярной биологии. Пекарские дрожжи — первый и самый простой ядерный (эукариотический) модельный организм в нашем путеводителе. Хотя стоп: плесень пальму первенства они разделяют с красной хлебной плесенью Neurospora crassa, еще до дрожжей облюбовавшей университетские лаборатории.
    0 Дмитрий Кнорре 02 марта 2020
  • Модельные организмы
    Модельные организмы: кишечная палочка
    Обзор
    Биология Медицина Микробиология
    Модельные организмы: кишечная палочка
    5027 2,3
    Скромная бактерия за полстолетия с момента ее открытия в конце XIX в. стала настоящей волшебной палочкой для молекулярной биологии. Сейчас результаты опытов с ее использованием занимают главы и тома профессиональных и популярных изданий. Конечно, в нашем путеводителе по модельным организмам E. coli должна была занять свое почетное место.
    1 Сергей Мошковский 03 февраля 2020
  • Модельные организмы
    Модельные организмы: фаг лямбда
    Обзор
    Биология Биотехнологии Вирусология Генетика
    Модельные организмы: фаг лямбда
    4201 1,9
    Неутомимо начнем Новый год с фага лямбда. Еще не успеют степлиться последние капли недопитого шампанского на кухне — а фаг уже с вами. И, когда вы ближе к вечеру откроете телефон или комп, фаг уже будет смотреть на вас своими голубыми-голубыми глазами... Стоп, какие еще глаза у фага?! Может, и никаких — всё это было для привлечения внимания к нашей первой публикации в цикле о модельных организмах. Вперед!
    4 Сергей Мошковский 07 января 2020
  • Модельные организмы
    Кто такие модельные организмы?
    Обзор
    Биология ОколоНауки
    Кто такие модельные организмы?
    3538 1,3
    Преданные читатели Биомолекулы, конечно, знают, что мы недавно выпустили настенный календарь на 2020 год, посвященный модельным организмам и их роли в науке. Но теперь мы подумали — как же так: эти милые существа будут смотреть на вас со стен квартир и лабораторий, но им не найдется места у нас на сайте? Не бывать тому: мы запускаем Спецпроект по модельным организмам! Эта заметка — просто введение, ну а в течение всего 2020 года мы будем публиковать по одному эссе в месяц, посвященному этим благородным созданиям. В путь!
    2 Сергей Мошковский 05 декабря 2019
  • <em>In vivo — in vitro — in silico</em> Обзор
    «Сухая» биология
    In vivo — in vitro — in silico
    13195 6,5
    Статья является введением к теме «Сухая биология» — в ней раскрывается смысл понятия in silico, а так же обсуждается его взаимосвязь с такими устоявшимися терминами как in vivo и in vitro.
    0 Антон Полянский 14 октября 2004
  • «Био/мол/текст»-2011
    Лучший обзор
    Молекулярное клонирование, или как засунуть в клетку чужеродный генетический материал
    Обзор
    Вирусология Генетика Генная инженерия ДНК Процессы
    Молекулярное клонирование, или как засунуть в клетку чужеродный генетический материал
    40719 19,0
    Статья на конкурс «био/мол/текст»: Огромное количество биологических исследований начинается с того, что в клетку вносится чужеродный генетический материал. Это действие называется молекулярным клонированием. С его помощью можно получить генетически модифицированные организмы, включить и выключить отдельные гены или определить роль конкретного белка в каком-нибудь процессе. Можно сказать, что молекулярное клонирование — это краеугольный камень, основа основ, фундамент, без которого множество замечательных методик было бы неосуществимо. Однако засунуть в клетку «неродную» ДНК не так-то просто: это длинный, трудоемкий и многоэтапный процесс. Молекулярному клонированию посвящены толстые книги, но, тем не менее, я попробую хотя бы немного рассказать о том, что это такое, и что нужно для того, чтобы все получилось.
    13 Вера Башмакова 30 октября 2011
  • 12 биометодов
    12 методов в картинках: генная инженерия. Часть II: инструменты и техники
    Обзор
    CAR-T CRISPR/CAS ГМО Генетика Генная инженерия Генная терапия ДНК МГЭ Микробиология РНК РНК-интерференция Цитология
    12 методов в картинках: генная инженерия. Часть II: инструменты и техники
    105035 49,0
    О том, что генная инженерия изменила мир, знают почти все, а вот каким образом — только специалисты. Об этом редко рассказывают в школе, а непонятное всегда подозрительно. Этим умело пользуются «говорящие головы», транслируя с телеэкранов альтернативную реальность. Чтобы не пугаться ГМО и не демонизировать генных инженеров, достаточно хоть немного представлять их работу и знать, что будущее их творений регулируется даже слишком строго. В первой части статьи мы вспомнили историю этой отрасли и затронули этические и коммерческие вопросы, с нею связанные. А сейчас предлагаем заглянуть в мастерскую генного инженера — пройти краткий курс кройки и шитья ДНК и познакомиться с методами, расширившими границы фундаментальных исследований, биотехнологии и медицины.
    2 Ольга Волкова 29 декабря 2017
  • 12 биометодов
    12 методов в картинках: генная инженерия. Часть I, историческая
    Обзор
    ГМО Генетика Генная инженерия Генная терапия Личность
    12 методов в картинках: генная инженерия. Часть I, историческая
    34553 17,0
    Полвека назад человек вплотную приблизился к возможности примерить на себя роль творца, творца самого настоящего, способного целенаправленно наделять создаваемые им организмы нужными чертами. Научившись напрямую манипулировать генами, из селекционера он превратился в инженера. Что же подвело его к этой черте и как изменился мир после? Предлагаем заглянуть в историю генной инженерии: вспомнить важнейшие открытия, сформировавшие ее теоретическую основу и методический арсенал, поразмышлять над этическими вопросами и оценить вес генно-инженерных разработок в денежном эквиваленте.
    0 Ольга Волкова 08 декабря 2017