Подписаться
  • «Био/мол/текст»-2015
    Своя работа
    В поисках клеток для ИПСК — шаг за шагом к медицине будущего
    Обзор
    Своя работа Стволовые клетки
    В поисках клеток для ИПСК — шаг за шагом к медицине будущего
    2288 1,0
    Статья на конкурс «био/мол/текст»: Открытие индуцированных плюрипотентных стволовых клеток (ИПСК) стало одним из самых громких и многообещающих достижений в научном мире за последние годы. Казалось бы, как только у каждого человека появятся свои собственные плюрипотентные стволовые клетки, разрешится огромное количество медицинских проблем. Тем не менее прошло уже почти десять лет, а применение ИПСК в реальной практической медицине толком еще и не начиналось. По-прежнему между открытием ИПСК и спасением мира от всех недугов стоит основная проблема — методы индукции плюрипотентности в клетках. Способом преодолеть эту пропасть может быть поиск клеточных типов, легче поддающихся перепрограммированию. Один из этих типов лежит буквально «на поверхности» — клетки дермальной папиллы.
    1 Евгения Алексеева 06 октября 2015
  • Увидевший нервный ток. Герберт Гассер Обзор
    Биомембраны Ионные каналы Нейробиология Нобелевские лауреаты
    Увидевший нервный ток. Герберт Гассер
    1071 0,5
    Наш нынешний герой — удивительный человек, американский врач и ученый, переживший две мировые войны, — основал нейрофизиологию как науку, впервые расшифровал «язык» мозга и, по мистическому стечению обстоятельств, умер от мозгового заболевания. В своих научных амбициях он сумел заглянуть в мыслительный аппарат человека — туда, где даже сейчас есть сотни неразгаданных вопросов и неубедительных гипотез. Речь пойдет о Герберте Гассере, «медицинском» нобелевском лауреате 1944 года. Формулировка Нобелевского комитета: «за открытия, имеющие отношение к высокодифференцированным функциям отдельных нервных волокон».
    1 Алексей Паевский 04 октября 2015
  • «Био/мол/текст»-2015
    Наглядно о ненаглядном
    100 лет хромосомной теории наследственности (1915–2015)
    Обзор
    Биология ДНК Инфографика Наглядно о ненаглядном Хроматин
    100 лет хромосомной теории наследственности (1915–2015)
    6017 2,7
    Статья на конкурс «био/мол/текст»: В 2015 году исполняется 100 лет хромосомной теории наследственности. Ее основные положения были сформулированы Т. Морганом, А. Стёртевантом, Г. Мёллером и К. Бриджесом в книге «Механизм менделевской наследственности», вышедшей в Нью-Йорке в 1915 году. А позднее Томас Морган получил первую «генетическую» Нобелевскую премию — за открытие роли хромосом в наследственности. Юбилею хромосомной теории была посвящена международная конференция «Хромосома 2015», прошедшая в августе 2015 года в Новосибирском Академгородке. Нижеизложенный текст — это авторские комментарии к постеру об истории исследований хромосом, представленному на конференции, а теперь и на «Биомолекуле» — в самой «живой» конкурсной номинации «Наглядно о ненаглядном».
    3 Дмитрий Коряков 25 сентября 2015
  • «Био/мол/текст»-2015
    Иммунология
    Враг моего врага — мой друг. Как бактерии и вирусы помогают создавать антитела для лечения человека
    Обзор
    Биотехнологии Вирусология Иммунология Медицина Микробиология
    Враг моего врага — мой друг. Как бактерии и вирусы помогают создавать антитела для лечения человека
    2298 1,1
    Статья на конкурс «био/мол/текст»: Одну из самых существенных опасностей для здоровья человека представляют бактерии. Но и у бактерий есть противники: вирусы-бактериофаги, которые используют микробную клетку в качестве гостиницы, где всё включено, а покидая пристанище, нередко убивают хозяина. Изобретение метода фагового дисплея позволило использовать свойства бактериофагов в поиске новых антител, которые чрезвычайно востребованы для совершенствования диагностики и терапии многих опасных заболеваний.
    0 Екатерина Павлова 08 сентября 2015
  • Спокоен как GABA Обзор
    Медицина Нейробиология Нейромедиаторы Рецепторы
    Спокоен как GABA
    99354 46,4
    Гамма-аминомасляная кислота (ГАМК) — главный тормозной медиатор в нервной системе человека. Но только тех из нас, у кого она уже развита. А чтобы обеспечить нам поистине олимпийское спокойствие, ей иногда помогает пёстрая компания очень известных веществ. Мы познакомимся с ГАМК поближе и узнаем, что эта молекула не так проста, как кажется на первый взгляд.
    30 Виктор Лебедев 31 июля 2015
  • Тема песни для Цоя: Карл Ландштейнер Обзор
    Иммунология Медицина Нобелевские лауреаты
    Тема песни для Цоя: Карл Ландштейнер
    1045 0,5
    Юность авторов этого текста прошла, как и у многих наших ровесников, под песни Цоя. Все мы смотрели на звезду по имени Солнце, влюблялись в восьмиклассниц, ждали перемен, удивлялись алюминиевым огурцам и запоминали свою группу крови, просто так — потому что до армии было еще далеко. И мало кто знал: если бы не застенчивый австрийский профессор, не было бы ни той самой песни Цоя, ни своей группы крови. Потому что группы крови открыл именно Карл Ландштейнер. И получил свою Нобелевскую премию через тридцать лет после того, как точно выяснил, почему кровь одного человека может не подойти другому. Формулировка Нобелевского комитета: «за открытие групп крови человека».
    1 Алексей Паевский 12 июля 2015
  • Молекула здравого ума Обзор
    Медицина Нейробиология Нейромедиаторы Рецепторы
    Молекула здравого ума
    45631 18,6
    Ацетилхолин — не самое знаменитое вещество, но он играет важную роль в таких процессах, как память и обучение. Давайте приоткроем завесу тайны над одним из самых недооцененных нейромедиаторов нашей нервной системы.
    7 Виктор Лебедев 22 мая 2015
  • Растения-биофабрики Обзор
    Генетика Генная инженерия ДНК Иммунология МГЭ Своя работа
    Растения-биофабрики
    8986 4,0
    Развитие биотехнологий открыло новые возможности использования живых организмов на благо человечества. Методы генетической инженерии позволяют производить различные вещества в живых объектах, следовательно, мы можем использовать эти объекты в качестве природных «фабрик». Центральная догма молекулярной биологии в общем случае гласит: ДНК → РНК → белок. Именно белок часто является конечным продуктом биотехнологического производства: это может быть инсулин, интерфероны, антитела, ферменты, вакцины... Нам лишь нужно задать программу и «записать» ее в ДНК, а живой объект всё сделает сам. В качестве «фабрик» используют клетки дрожжей, бактерий, растений, а также культуры клеток насекомых и млекопитающих. В этой статье речь пойдет о растительных биофабриках.
    0 Евгения Марданова 08 мая 2015
  • Метроном: как руководить разрядами? Обзор
    Биофизика Ионные каналы Медицина Нейромедиаторы
    Метроном: как руководить разрядами?
    3693 1,7
    Как много механизмов и чудес техники придумано человеком. А как много позаимствовано им у природы!.. Иной раз невольно диву даешься, что вещи из разных и, казалось бы, не связанных между собой областей подчиняются общим законам. В этой статье мы проведем параллель между прибором, задающим ритм в музыке — метрономом, — и нашим сердцем, обладающим физиологическим свойством генерировать и регулировать ритмическую активность.
    1 Наталия Штефан 16 апреля 2015
  • Что такое ДНК-вакцины и с чем их едят? Обзор
    Вакцины Вирус Эбола Генная инженерия ДНК Иммунология Микробиология Нано(био)технологии
    Что такое ДНК-вакцины и с чем их едят?
    13470 6,3
    ДНК-вакцины относятся к типу принципиально новых биологических препаратов. С их разработкой связывают большие надежды на повышение эффективности профилактики не только заболеваний бактериальной, вирусной и паразитарной природы, но и аллергических, аутоиммунных и даже онкологических болезней. Более двадцати лет назад возникла идея использовать гены возбудителей заболеваний для активации защитных механизмов. Конструкция ДНК-вакцин гениально проста: главные компоненты в ней — вектор и целевой иммуноген. Но, несмотря на это, ДНК-вакцины не стоят на страже нашего здоровья: их не вводят пациентам в поликлиниках, они не продаются в аптеках...
    0 Лидия Кравченко 09 апреля 2015