Шестое ДНК-основание: от открытия до признания
25 августа 2015
Шестое ДНК-основание: от открытия до признания
- 3314
- 0
- 5
-
Автор
-
Редактор
Статья на конкурс «био/мол/текст»: «Подстрели-ка ты, Иван-царевич, селезня! В селезне утка, в утке яйцо, в яйце иголка, а в иголке — жизнь и смерть Кощеева». Так гласит народная сказка. Однако в отношении живой клетки это не сказка, а быль: в организме содержатся клетки, в клетке ядро, в ядре хромосомы, а в хромосоме таится ДНК — хранительница генетического кода. В свою очередь в ее двойной спирали спарены четыре основания — цитозин и гуанин, аденин и тимин. Но испанские исследователи Х. Хейн и М. Эстеллер говорят нам, что не всё так просто и что помимо этих четырех «классических» оснований в живых организмах существуют их модификации.
Конкурс «Био/Мол/Текст»-2015
Эта работа опубликована в номинации «Лучшее новостное сообщение» конкурса «био/мол/текст»-2015.
Спонсором номинации «Лучшая статья о механизмах старения и долголетия» является фонд «Наука за продление жизни». Спонсором приза зрительских симпатий выступила фирма Helicon.
Спонсоры конкурса: Лаборатория биотехнологических исследований 3D Bioprinting Solutions и Студия научной графики, анимации и моделирования Visual Science.
Пятое основание , метилцитозин, было обнаружено еще в 80-х годах прошлого века. С тех пор его находили в самых разных организмах — от прокариот до высших животных. В этом году к пятерке оснований прибавили еще одно, тоже модифицированное, — метиладенин [1]. Чаще всего метиладенин присутствует в геноме бактерий, но в незначительных количествах он содержится и в других организмах.
О том, как буквы складываются в слова (т.е. основания ДНК определяют первичную структуру белка), об истоках генетического кода и его характере — цифровом и аналоговом — читайте в статье «У истоков генетического кода: родственные души» [2]. А о том, как в высоких целях «апгрейда» белков преодолеть природную ограниченность кода (и даже его триплетность!), поколдовав над рибосомами и не только, — в работах «Слово из четырёх букв» [3], «Две рибосомные субъединицы объединили в функциональный гибрид» [4]. — Ред.
Возникает вопрос, зачем нужны метилированные основания? Или это просто цитозин и аденин с СН3-группой? Нет, конечно. Метилированные основания необходимы всем организмам, будь то прокариоты или эукариоты. В первом случае процесс метилирования некоторых сайтов (участков) защищает бактериальную ДНК от разрушения собственными расщепляющими ферментами — эндонуклеазами. Что же касается инородных молекул, которые подобному метилированию не подвергаются, то их ждет незавидная участь быть переваренными. Такая мудрая тактика распознавания «свой—чужой» называется системой рестрикции-модификации (рис. 1) [5].
У эукариот метилирование ДНК приводит к стабильному подавлению экспрессии некоторых генов. Также оно отвечает за такие интересные явления, как инактивация одной Х-хромосомы у самок млекопитающих и импринтинг. В первом случае одна из двух половых хромосом самок теряет активность (неважно, отцовская или материнская) с той целью, чтобы самки не образовывали продуктов экспрессии генов больше, чем самцы. А в случае импринтинга аллели проявляются по-разному в зависимости от того, откуда они поступили: от мамы или от папы. Наглядным подтверждением этому служат различные болезни, которые наследуются только от родителя определенного пола, например, синдром Ангельмана (рис. 2).
Метилирование нуклеотидов ДНК — один из главных механизмов эпигенетических модификаций хроматина (наряду с химическим изменением гистонов: ацетилированием, метилированием, убиквитинированием и пр.). Эпигенетические метки, не меняя последовательность ДНК, определяют, как ее нужно читать — каким генам молчать, а каким — работать: «Развитие и эпигенетика, или история о минотавре» [6], «Катится, катится к ДНК гистон» [7]. Но мало знать, «как оно там устроено», важно применять знание в оценке состояния здоровья (особи и ее потомства) и лечении болезней: «Эпигенетические часы: сколько лет вашему метилому?» [8], «Эпигенетика поведения: как бабушкин опыт отражается на ваших генах?» [9], «Пилюли для эпигенома» [10]. — Ред.
ДНК-метилирование в чём-то подобно мутации. Оно является стабильной и наследуемой модификацией. Но в отличие от мутаций, метилирование не изменяет генетический код, а регулирует экспрессию генов. Именно поэтому метилирование ДНК — эпигенетическое событие (меняется активность генов), а не генетическое.
Новые технологии и результаты
Теперь, разобравшись, насколько большую роль метилирование ДНК играет в живых клетках, мы можем перейти непосредственно к исследованию Хейна и Эстеллера [1], [11]. Они в своей работе определили содержание метиладенина в геноме зеленой водоросли Chlamidomonas reinhardtii, мухи Drosophila melanogaster и червя Caenorhabditis elegans и изучили его эпигенетическую функцию. По причине минимального содержания этого основания в клетках эукариот (в отличие от метилцитозина, который содержится в большем количестве) ученым пришлось использовать высокочувствительное оборудование для его обнаружения.
Им понадобился секвенатор нового поколения и аппаратура для ультравысокоэффективной жидкостной хроматографии (рис. 3), сочетающейся с масс-спектрометрией. С помощью хроматографии можно обнаружить модифицированные нуклеотиды, содержание которых в образце ДНК незначительно. Вот как это работает: ДНК разделяется с помощью жидкостной хроматографии на компоненты, различные по массе [12], которые затем анализируются масс-спектрометрами. Таким образом, разница между немодифицированной и модифицированной ДНК устанавливается на основе различия их молекулярных масс.
Хейн и Эстеллер применили инновационный метод определения нуклеотидной последовательности в реальном времени — одномолекулярное секвенирование ДНК (рис. 4) [13]. Он дает возможность исследователям наблюдать за работой единичной молекулы ДНК-полимеразы в реальном времени, пока она достраивает вторую цепь ДНК. Нуклеотиды, которыми оперирует ДНК-полимераза, предварительно помечены флуоресцентными красителями. Метки испускают свет, который регистрируется прибором. Этот метод позволяет расшифровывать очень длинные последовательности ДНК .
Другие прогрессивные методы секвенирования генома и оценки его экспрессии — на уровне отдельных клеток — обсуждаются в статьях «Секвенирование единичных клеток (версия — Metazoa)» [14] и «Разработан метод анализа экспрессии генов на уровне индивидуальных клеток» [15]. — Ред.
Итак, с помощью всех этих стратегий исследователи проанализировали содержание метиладенина у трех различных организмов. И у зеленой водоросли, и у мухи, и у червя метиладенина оказалось мало. Настолько мало, что приходилось проводить некоторые эксперименты повторно, чтобы его обнаружить. Но низкий процент содержания — не синоним бесполезности. Хейн и Эстеллер считают, что метиладенин является эпигенетической меткой, регулирующей экспрессию определенных генов. Также их удивил тот факт, что у эмбрионов мух уровень метиладенина выше, чем у взрослых насекомых. «Это может означать, что метиладенин играет особую роль на ранних стадиях развития», — говорят исследователи.
Процент метилированных оснований в ДНК контролируется с помощью специального фермента — деметилазы. Этот фермент преобразует метилированные основания в обычные, не нарушая целостности генома. Важность этого процесса доказывает тот факт, что при изменении активности деметилазы возрастает смертность эмбрионов.
А есть ли метиладенин у человека?
Оставив в стороне мух и червей, зададим прямой вопрос: есть ли метилированный аденин у человека? Ответ неоднозначен: если и есть, то в очень малых количествах. Косвенные свидетельства говорят в пользу наличия метиладенина — например, особый деметилирующий фермент присутствует у высших эукариот. Мы знаем, что он деметилирует исключительно метиладенин, а значит, скорее всего, шестое основание обнаружат и у нас с вами. Для подтверждения наличия метиладенина у человека предстоит провести опыты, используя технологии нового поколения.
В заключение
Метиладенин — так называемый шестой нуклеотид, обнаруженный у бактерий, водорослей, животных. «Мы до сих пор недооценивали роль модифицированных оснований в жизни организмов, но теперь ясно, что они несут в себе неизвестные прежде функции», — вот главная мысль исследователей Х. Хейна и М. Эстеллера. Мы знаем, что метиладенин необходим для защиты генома бактерий, и предполагаем, что он регулирует экспрессию генов у эукариот. Совершенствуя технологии секвенирования и хроматографии, мы сможем обнаружить метиладенин в различных биологических объектах и предсказать его новые функции.
Литература
- Holger Heyn, Manel Esteller. (2015). An Adenine Code for DNA: A Second Life for N6-Methyladenine. Cell. 161, 710-713;
- У истоков генетического кода: родственные души;
- Слово из четырёх букв;
- Две рибосомные субъединицы объединили в функциональный гибрид;
- «Мятный холодок»: почему ментол создаёт ощущение прохлады во рту;
- Развитие и эпигенетика, или История о Минотавре;
- Катится, катится к ДНК гистон;
- Эпигенетические часы: сколько лет вашему метилому?;
- Эпигенетика поведения: как бабушкин опыт отражается на ваших генах?;
- Пилюли для эпигенома;
- Sixth DNA base discovered? ScienceDaily (4 May 2015);
- Википедия: «Высокоэффективная жидкостная хроматография»;
- Википедия: «Одномолекулярное секвенирование в реальном времени»;
- Секвенирование единичных клеток (версия — Metazoa);
- Разработан метод анализа экспрессии генов на уровне индивидуальных клеток.