-
Статья на конкурс «био/мол/текст»: С развитием современных технологий идея изучать клетку на уровне отдельных молекул получила новые технические возможности. Современные методы микроскопии позволяют увидеть, как выглядят клетки, их органеллы (световая микроскопия) и даже отдельные молекулы внутри фиксированных клеток (электронная микроскопия). Использование флуоресцентных меток позволяет увидеть отдельные молекулы в живых клетках с помощью световой микроскопии, а использование сверхчувствительных видеокамер и компьютерных программ для обработки видеозаписей дает возможность судить о функциях конкретных молекул.
-
9932Статья на конкурс «био/мол/текст»: Флуоресценция: свечение, индуцированное светом. Мы почти не встречаем или не замечаем это явление в обычной жизни. Интенсивность флуоресценции слишком мала по сравнению с вызывающим ее светом. Так, например, мы даже не догадываемся, глядя на зеленый лист растения, что хлорофилл в нем флуоресцирует красным светом. Однако ученым удалось разработать приборы и методы, позволяющие не только выявлять, но и измерять различные параметры флуоресценции. Причем оказалось, что, благодаря этим измерениям, можно получать уникальную информацию о молекулярной организации и функционировании биологических систем. Так был создан и постоянно расширяется богатый арсенал оптических методов исследований, в которых особую роль играют специальные вещества — флуоресцентные репортеры.
-
Изобретение микроскопа в позднем средневековье открыло человечеству целый мир, находившийся испокон веков буквально под носом, — например, клеточное строение всех живых организмов и существование бактерий. Однако волновая природа света диктует ограничение на разрешающую способность оптических микроскопов: оно принципиально не может быть лучше 0,2 мкм. В 2014 году Нобелевскую премию по химии вручили за разработку методов сверхразрешающей микроскопии, позволивших, с использованием ряда ухищрений, преодолеть дифракционный барьер.
-
Статья на конкурс «био/мол/текст»: Феномен биолюминесценции известен около двух с половиной тысячелетий, однако только в ХХ веке ученые вплотную взялись за изучение его химической природы. По современным оценкам, существует около 30 различных биолюминесцентных систем, но на данный момент известны структуры только семи природных люциферинов, последняя из которых была расшифрована 25 лет назад. В ходе недавнего исследования, проведенного совместно группой синтеза природных соединений и лабораторией биомолекулярной ЯМР-спектроскопии ИБХ РАН в Москве, а также красноярской лабораторией фотобиологии ИБФ СО РАН, была расшифрована структура и проведен полный синтез нового люциферина, обладающего уникальными химическими свойствами. Этот люциферин является ключевым компонентом новой АТФ-зависимой биолюминесцентной системы.
-
В эпоху электронно-вычислительных машин трудно представить, что помочь человеку в решении его задач может что-либо помимо мощного компьютера. Квантовые компьютеры все ещё являются экзотикой, недоступной простым смертным... А слышали ли вы о молекулярных компьютерах? Прошло два десятка лет с тех пор, как ученые впервые решили математическую задачу при помощи ДНК. На сегодняшний день ученым удалось продвинуться в этом направлении гораздо дальше — работу программируемых нанороботов уже тестируют на тараканах. Вы всё еще думаете, что будущее далеко? Тогда мы идем к вам!
-
При упоминании флуоресцентных белков люди чаще всего представляют себе разноцветные клетки, забавные рисунки бактериями на чашках Петри, в крайнем случае, целые флуоресцирующие организмы — от медуз до кошек, — эдакая цветная палитра. Однако область применения этого замечательного инструмента расширяется с каждым годом, — как и разнообразие самих белков. В этой статье мы поговорим о новых поколениях флуоресцентных белков и рассмотрим некоторые интересные методы на их основе.
-
Сложить журавлика из бумаги — легко! Сложить журавлика из молекулы ДНК... тоже легко! Немного усидчивости и мастерства позволяют своими руками создавать из бумаги настоящие произведения искусства. Молекулы ДНК, в свою очередь, не требуют специальных навыков и собираются в красивые структуры на подобие оригами легко и непринужденно! Звучит как бред сумасшедшего, скажете вы. Отнюдь! Из этой статьи вы узнаете, как создать свою собственную фигурку оригами из ДНК, как похитить золото с помощью роботов, и кто победит в схватке между тараканом и ДНК-машиной.
-
Исследование окружающего нас мира всегда начинается с описания его составных частей. На заре развития химии ученые большую часть времени описывали свойства и состав различных веществ. Позже они стали пытаться синтезировать эти вещества и обнаружили, что это позволило им еще глубже понять законы строения материи. Похожим путем сейчас идет и молекулярная биология — от эпохи разбора клетки «на запчасти» и секвенирования геномов всевозможных организмов к созданию синтетического генома с новыми свойствами. Первым шагом к этому было создание синтетического генома бактерии в Институте Вентера. Новый виток развития молекулярной биологии — создание дрожжей S. cerevisiae с измененным синтетическим геномом, который ученые называют Sc2.0. Статья рассказывает о первом успехе этого проекта — синтезе первой эукариотической хромосомы.