-
Каждый раз, когда клетки делятся митозом или мейозом, их ДНК расплетается и удваивается, умудряясь при этом сохранять свою структуру и целостность. Ювелирная упаковка ДНК (обеспечиваемая гистонами) жизненно важна, ведь именно от неё зависит, какие гены будут считываться и работать в той или иной клетке. Подробности того, как ДНК удаётся упаковаться каждый раз правильным образом и как происходит транспортировка нужных гистонов к месту сборки, выясняла команда биологов из Биотехнологического центра исследований и инноваций Университета Северной Дании и Университета Копенгагена. Эта работа вошла в кандидатскую диссертацию Илназ Климовской, сейчас — менеджера медицинских и научных проектов в «Новартис Фарма» в Москве. Результаты исследования опубликованы в журнале Nature Communications.
-
Сложить журавлика из бумаги — легко! Сложить журавлика из молекулы ДНК... тоже легко! Немного усидчивости и мастерства позволяют своими руками создавать из бумаги настоящие произведения искусства. Молекулы ДНК, в свою очередь, не требуют специальных навыков и собираются в красивые структуры на подобие оригами легко и непринужденно! Звучит как бред сумасшедшего, скажете вы. Отнюдь! Из этой статьи вы узнаете, как создать свою собственную фигурку оригами из ДНК, как похитить золото с помощью роботов, и кто победит в схватке между тараканом и ДНК-машиной.
-
Последовательность ДНК определяет строение белка с помощью триплетного генетического кода, в котором каждой аминокислоте соответствует три нуклеотида. Случайные мутации приводят к изменению последовательности нуклеотидов, в результате чего появляются новые варианты белков. Именно так до недавнего времени представляли себе ученые эволюцию белков. Но благодаря исследованиям последних лет оказалось, что помимо генетического кода есть и другие «коды», которые диктуют эволюции белков свои правила.
-
Статья на конкурс «био/мол/текст»: Ученые исследовали единичные клетки со времен изобретения микроскопа. Но такие методы-киты молекулярной биологии, как анализ на микрочипах, секвенирование нуклеиновых кислот и масс-спектрометрия подразумевают использование некоторой массы клеток. Однако если взять среднее большого числа клеток, то на выходе получим усредненный результат. Есть области, где усредненный результат — это уже неинтересно; есть важные фундаментальные вопросы, на которые вам ответит только она — Единичная клетка. Например, этот подход может стать одним из ключей к познанию тайн эмбрионального развития, закономерностей дифференциации стволовых клеток, функционирования нейронов и выработке стратегий лечения опухолевых заболеваний.
-
Статья на конкурс «био/мол/текст»: Проникновение в тайны эволюции — одно из самых захватывающих направлений в современной биологии. Однако тут есть небольшая проблема: пока не изобретена машина времени, чтобы можно было своими глазами увидеть, как развивалась жизнь на Земле. Впрочем, в наше время существуют методики, которые позволяют приподнять завесу тайны над эволюцией, и одна из основных среди них — построение филогении всего живого, то есть «древа жизни». Для этого можно использовать различные признаки, главный среди которых — это последовательность ДНК, в которой закодировано все разнообразие современных и ископаемых существ. В этой статье рассказывается о методиках построения таких филогений, частично заменяющих ученым машину времени.
-
13652Статья на конкурс «био/мол/текст»: Аллополиплоидия, или объединение чужеродных геномов в одном ядре, — чрезвычайно распространенный феномен среди высших растений. Чтобы понять механизмы этого явления, ученые научились его моделировать путем создания синтетических аллополиплоидов. В данном обзоре представлены современные данные, касающиеся путей реорганизации геномов аллополиплоидов, начиная с самых ранних стадий их формирования.
-
Статья на конкурс «био/мол/текст»: Обобщение данных и поиск закономерностей — одна из важных функций науки. Однако в определенных ее областях имеются трудности с осуществлением этой задачи из-за разнообразия данных. И как раз такая ситуация наблюдается в теломерной биологии. Непредсказуемость динамики теломерной ДНК (тДНК) у новых целевых видов является хорошей иллюстрацией к вышесказанному. Здесь мы расскажем об удивительных результатах, которые получили авторы, исследовавшие теломерную биологию африканской рыбы Nothobranchius furzeri.
-
4148Статья на конкурс «био/мол/текст»: Многие длинные некодирующие РНК участвуют во включении и выключении генов, но как они физически «пробираются» к нужным участкам ДНК по клеточному ядру, мы знаем плохо. И вот недавно группа американских ученых решила полюбопытствовать, в каких местах Х-хромосомы оказывается длинная некодирующая РНК Xist перед тем, как Х-хромосома инактивируется, и её гены перестают читаться. Оказалось, что Xist постепенно «пробирается» от участка своей транскрипции к дальним местам хромосомы. И что интересно, участки ДНК, возле которых молекулы этой РНК собираются перед распространением по всей хромосоме, не отличаются специфическими последовательностями нуклеотидов. Скорее, сами молекулы Xist «исследуют» трёхмерную архитектуру хромосомы и постепенно облепляют её, в то же время инактивируя с привлечением специальных белков.