-
Надежда на успешное применение системы CRISPR/Cas9 для решения проблем точного редактирования генома оказалась небезосновательной. Найденные у бактерий и архей в 1987 году непонятно для чего предназначенные кластеры повторов (CRISPR) недаром привлекли внимание исследователей: через 20 лет, изучая бактериальные штаммы для изготовления разного рода заквасок, ученые показали, что система CRISPR/Cas9 защищает бактерий от вирусов. И стали успешно применять ее для своих целей — редактирования геномов всех типов живых организмов. Эта штука была так удобна, проста в применении и эффективна, что не переставала радовать исследователей. И вот опять.
-
У полиплоидных организмов каждая хромосома представлена более чем в двух копиях. Ученые продемонстрировали, что тетраплоидные дрожжи (с четырьмя копиями хромосом) адаптируются к неоптимальным условиям быстрее, чем диплоидные (с двумя копиями) и гаплоидные (с одной копией каждой хромосомы). Большее количество копий хромосом позволяет организмам свободнее экспериментировать с мутациями, которые могут быть полезными для адаптации.
-
955Чтобы понять, какие именно молекулярные механизмы «подняли» кору мозга человека на принципиально иной уровень сложности по сравнению с другими животными, ученые сравнили активности регуляторных генетических элементов человека, мыши и макака резуса на разных стадиях эмбриогенеза. Оказалось, что у человека многие регуляторные элементы существенно отличаются от мышиных и обезьяньих эпигенетическим ландшафтом: профилем модифицированных гистонов, «маркирующих» только активные энхансеры и промоторы. Человеческие энхансеры с метками активности позволяют регулируемым генам транскрибироваться в большем числе мозговых структур и отвечают за размножение клеток-предшественников нейронов, регуляцию их клеточного цикла и синтез внеклеточного матрикса. Благодаря этим процессам кора головного мозга человека становится сложнее уже на ранних стадиях развития.
-
Каждая наука строится усилиями тысяч и тысяч ученых. Вклад каждого из них — важен и необходим. Но в каждой науке есть те, кого принято называть «отцами» или «основоположниками». Эти люди смогли сделать самые первые шаги, придумать алфавит, слагающий язык науки, которая появилась из их трудов. И, безусловно, если говорить о генетике, два первых шага сделали Грегор Мендель, открывший первые законы наследования, и Томас Морган, объяснивший, почему эти законы именно таковы. Или, говоря школьным языком, показал физический смысл открытых Менделем закономерностей. За что и был удостоен Нобелевской премии в 1933 году. Формулировка Нобелевского комитета: «за открытия, связанные с ролью хромосом в наследственности».
-
Словосочетание «генная инженерия» прочно вошло в лексикон нашего времени. Существуют тысячи генно-модифицированных организмов, идет речь о генной терапии наследственных заболеваний, «редактирование» геномов ведется в тысячах лабораторий по всему миру. Первый шаг на этом пути сделал человек, и поныне живущий на Земле. В следующем году создатель первой в мире рекомбинантной ДНК — Пол Берг — будет праздновать 90-летие, а в этом — 35-летие присуждения ему Нобелевской премии. Формулировка Нобелевского комитета: «за фундаментальные исследования биохимических свойств нуклеиновых кислот, в особенности рекомбинантных ДНК». Сама же генная инженерия постепенно приближается к своему полувековому юбилею, который мировая наука отметит в 2022 году.
-
Молодая пара приходит в магазин. Девушка выбирает платье для дня рождения подруги, а молодой человек пытается пройти на смартфоне очередной уровень игры. Он поднимает глаза на спутницу и произносит роковые слова: «Это розовое платье тебе идет». Девушка вспыхивает от обиды: — Оно не розовое! Оно нежно-коралловое. Кто прав? И при чем тут сетчатка глаза?
-
Удвоение генетического материала перед делением клетки — очень точный процесс. Но мутации в геноме не перестают накапливаться, что приводит как к болезням, так и к появлению нового материала для эволюции. Оказывается, одним из механизмов сохранения мутаций может служить связывание белков — полимераз и транскрипционных факторов — с ДНК. Они создают помеху для «выщепления» ошибочных последовательностей, синтезированных неточной ДНК-полимеразой α.