-
Многие издания подводят в конце декабря итоги печатного года — и «Биомолекула» не исключение. Знакомьтесь с нашим хит-парадом статей, которые в 2018 году читали чаще всего! Если вы видели прошлогодний «парад открыток», то что-то может вам показаться знакомым — некоторые обзорные статьи не теряют актуальности и продолжают регулярно просматриваться. Но появились и новички, которые привлекли к себе много читателей.
-
Заключительная статья спецпроекта о биспецифических антителах посвящена контролю качества этого класса биотехнологических продуктов. В ней рассмотрены особенности обеспечения качества антител по сравнению с молекулами, полученными путем химического синтеза, вопросы определения подлинности и чистоты, рассказано о новых подходах к контролю качества и о методах, которые при этом используются.
-
Технология редактирования генома, основанная на CRISPR/Cas, стремительно набирает популярность в качестве инструмента для решения самых разных биологических задач. Чаще всего в качестве редактора используют белок-эффектор Cas9, который с помощью направляющей (гидовой) РНК узнает ДНК-мишень, а затем разрезает ее. Впрочем, несмотря на свою популярность, Cas9 не лишен недостатков, в частности, он нередко разрушает не те мишени, которые были запрограммированы в гидовой РНК. Возможная альтернатива Cas9 — белки Cas12, в частности Cas12b, которые несколько лет назад предсказал сотрудник, а тогда аспирант, Сколтеха Сергей Шмаков. Любопытно, что, несмотря на то что для распознавания мишени Cas12b нужно спаривание всего лишь пяти нуклеотидов гидовой РНК с мишенью, этот фермент довольно специфичен. Как же Cas12b это удается? В работе, опубликованной журналом RNA biology, аспирантка Ишита Джайн из Центра наук о жизни Сколтеха и ее соавторы решили разобраться с этим. Попробуем разобраться и мы.
-
1148Арсенал защитных инструментов бактерий, с помощью которых они дают отпор фагам, не исчерпывается хорошо изученными системами рестрикции-модификации и CRISPR/Cas: существует множество других защитных систем, изученных значительно хуже. Исследователи из Центра наук о жизни Сколтеха и других организаций вплотную занялись одной из таких систем, которая известна как BREX (от англ. bacteriophage exclusion). Хотя механизм ее работы всё еще неизвестен, ученые смогли понять, как эта система распознает, какую ДНК нужно разрушить, а какую — нет. В этой статье мы не только разберемся в известных деталях функционирования системы BREX, но и побеседуем с первым автором публикации в Nucleic Acid Research — Юлией Гордеевой, которая, кстати, на момент выполнения работы была только студенткой-магистрантом Сколтеха.
-
Говоря о системе CRISPR/Cas, в большинстве случаев имеют в виду локусы CRISPR, содержащие спейсеры и повторы, и связанные с ними гены, кодирующие белки Cas. Однако, помимо Cas, существуют и другие белки, тесно связанные с CRISPR. Некоторые из них строго необходимы для функционирования системы, другие встречаются вблизи локусов CRISPR лишь изредка. Как понять, имеет ли белок какое-либо отношение к CRISPR/Cas или нет? Группа ученых из Центра наук о жизни Сколтеха и Национальных институтов здоровья на страницах престижного журнала Proceeding of National Academy of Sciences сообщила о создании специального инструмента, который позволит ответить на этот вопрос. В нашей статье мы его и обсудим.
-
В прошлых статьях спецпроекта о биспецифических антителах мы говорили о том, что такое биспецифические антитела и как их разрабатывают. В этой публикации мы рассмотрим очень важный вопрос производства антител, в том числе биспецифических. Какие технологии применяются при производстве антител? Какие здесь существуют сложности и как они решаются? Насколько дорого производить такие антитела и во что обходится обеспечение качества производства?
-
В четвертой статье спецпроекта о моноклональных антителах мы обсудим их способность лечить различные заболевания: от злокачественных опухолей до болезни Альцгеймера. Мы разберемся в многообразии современных препаратов, созданных на основе моноклональных антител, расскажем, какие особенности структуры антител могут быть использованы в современной фармацевтике.
-
Возможно, в ближайшем будущем школьники наконец-то получат возможность «потрогать руками» молекулярную биологию и почувствовать себя настоящими учеными. Команда американских ученых разработала уникальный набор для интерактивного обучения молекулярной биологии, с которым сможет справиться любой школьник, а результат выполнения заданий — пробирки, флуоресцирующие разными цветами, — никого не оставит равнодушным. Набор не предполагает наличия какого-то специального оборудования, а для выполнения заданий не требуется особых навыков — просто налить воды в пробирку и оставить на сутки! Стоимость набора, рассчитанного на класс из тридцати человек, составит менее $100, поэтому его сможет позволить себе любая школа. Наша статья посвящена этому технологическому чуду, которое может принципиально изменить концепцию школьного преподавания молекулярной биологии.
-
Статья на конкурс «био/мол/текст»: История о том, как мы пошли туда, не знаю куда, чтобы найти то, не знаю что. Если вы думаете, что видите то, что видите, и уверены, что исследуете то, что исследуете — проверьте еще раз, а потом еще раз. На примере нашего почти детективного исследования и поиска неизвестно чего можно увидеть, как важно выбрать правильную стратегию исследования, использовать подходящие методы и подвергать сомнению результаты. Ведь зачастую мы просто забываем о возможности получения каких-то артефактов — мы же строим свои гипотезы на базе опубликованных и проверенных данных. Даже если вы обложились самой лучшей литературой и имеете доступ к самому современному оборудованию, результат, к сожалению, не гарантирован. Для успеха научного эксперимента важны еще и не совсем научные составляющие: это они — везение, капелька удачи, стечение обстоятельств — иногда приводят к весьма неожиданным результатам.
