Оглавление

Жизнь — это компьютер

  • 1639
  • 4,6
  • 0
  • 0
Добавить в избранное
Почему лауреаты Нобелевской премии занялись информатикой?
Статья на конкурс «био/мол/текст»: Когда-то главным орудием биологов были сачок и лупа. Потом — микроскоп и пробирки. Сейчас основным инструментом, необходимым для понимания жизни, становятся информационные технологии. Чтобы проникнуть в тайны биоинформатики, мы поговорили с несколькими нобелевскими лауреатами, узнали, почему геном человека до сих пор не расшифрован, увидели, как физтех превращается в биотех, а физики — в биологов, и даже почти поняли, как ученые читают генетический код и перепрограммируют живые клетки.

Слушаю лауреата Нобелевской премии Филлипа Шарпа:

— Мы в Массачусетском технологическом институте называем это третьей революцией в биомедицине. Первой революцией было открытие структуры ДНК, второй — «революция генома», то есть расшифровка геномов живых организмов и разработка геномного подхода в целом. Сейчас происходит третья революция — слияние науки о жизни с математикой и информационными технологиями, с инжинирингом и физикой. Эта революция интегрирует науки о жизни на новой, информационной основе. Когда-то физики дали инженерам электрон, и в мире началась IT-революция. Потом биологи дали инженерам ген и вместе они создадут будущее.

В сколковском Гиперкубе на конференции «Терапия будущего» встретились сразу два нобелевских лауреата. Выступает Филлип Шарп, открывший множество новых видов РНК (их десятки, помимо тех, что мы изучали в школе*), создавший РНК-терапию и получивший нобелевку за открытие прерывистой структуры генов — каждый из них записан на ДНК небольшими кусочками, которые перемежаются вроде бы бессмысленными последовательностями символов. Вместе с нами его слушает Синья Яманака, получивший свою нобелевку [2] за то, что научил биологов менять генетическую программу клеток взрослого организма, возвращая их в «детство», а затем превращая эти забывшие о своей специализации юные плюрипотентные клетки в специализированные клетки разных органов и тканей**.

* — «Биомолекула» рассказывала об этом в статье «Обо всех РНК на свете, больших и малых» [1].

** — Об индуцированных плюрипотентных стволовых клетках мы также не раз уже рассказывали, например в статьях «Была клетка простая, стала стволовая» и «Ствол и ветки: стволовые клетки» [2–4]. — Ред.

Филипп Шарп, лауреат Нобелевской премии по физиологии и медицине 1993 года.

Помимо блестящей медицинской перспективы их открытий, сдержанного японца и харизматичного американца объединяет то, что оба корифея рассказывают, как передается и обрабатывается информация в живых клетках и между ними, — так, словно биологические системы — это своего рода живые компьютеры, и для их понимания больше всего подходит язык информатики. Наука, занимающаяся изучением биологических «программ» и «компьютеров», называется биоинформатикой.

С точки зрения биоинформатики, ядро каждой клетки — что-то вроде микроскопической флэшки огромной вместимости. Внутри ядра на молекулах ДНК записаны программы — одни и те же для всех клеток организма, но каждый клеточный компьютер выполняет их по-своему в зависимости от внешних сигналов (модификация генетического кода, приводящая к различному выполнению этой программы, называется эпигенетикой*). Если мы сумеем прочитать код и понять принципы работы клеточного компьютера, то сможем управлять программой сами. Может ли быть для ученых перспектива заманчивей этой?

* — Эпигенетика входит в число постгеномных проблем, потому что после прочтения последовательности ДНК человека так и не стало ясно, как же устроена жизнь, а эпигенетика обещает нас хотя бы отчасти приблизить к решению этого несомненно важного вопроса [5]. Разумеется, помимо удовлетворения ненасытного любопытства исследователей, эпигенетика, как и всякая стóящая проблема, таит и практические выгоды: так, уже начали появляться лекарства, действующие на эпигенетическом уровне [6]. — Ред.

В подтверждении своих слов о слиянии биологических технологий с информационными, Шарп показывает нам карту окрестностей Массачусетского технологического института, окруженного плотным кольцом зданий крупнейших мировых биотехнологических и IT-компаний, стремящихся даже физически быть как можно ближе к лабораториям, в которых делаются открытия.

— Вот поэтому университеты в США — сейчас главные драйверы инноваций и экономики вообще, — учит Шарп, а мы тем временем уводим Яманаку и его японскую свиту на небольшой разговор.

Перепрограммисты

Наверное, каждый видел фотографии зеленых светящихся кроликов и свинок*. Выглядит забавно, а достигается за счет внедрения гена флуоресцентного белка в геном животного. Это примерно то же, как дополнить свой Windows программой от Google. Из той же серии лечение наследственных заболеваний или создание бактерий, производящих топливо и лекарства**.

* — Если кто не видел, то почитайте статью «Флуоресцентные белки: разнообразнее, чем вы думали!» [7], а если кто-то вообще не в курсе, что такое флуоресцентные белки (ударение на И), — то еще и статью «Флуоресцирующая Нобелевская премия по химии» [8].

** — Возможно, в будущем самое энергоемкое химическое топливо — водород — будет производиться фотосинтезирующими бактериями на просторах океана, генетически модифицированными именно для этой задачи [9]. — Ред.

Но можно не только дополнить «операционную систему» живого организма «приложениями» других производителей. Есть возможность заставить работать по-другому уже имеющуюся программу.

Синья Яманака, лауреат Нобелевской премии по физиологии и медицине 2012 года. Картинка: Gladstone Institutes/Chris Goodfellow.

В 2006 году успехи других «перепрограммистов» живых клеток затмил Синья Яманака. Он взял клетку из кожи мышиного хвоста и превратил ее в плюрипотентную — ту, которая может порождать любые клетки организма. Такие клетки стали называть ИПСК — индуцированными плюрипотентными стволовыми клетками [2–4]. Настоящий рай для медиков. Уже в следующем году Яманака сумел повторить свой успех на человеческой клетке.

— Как происходит перепрограммирование соматической клетки в ИПСК?

— Суть очень проста: мы вводим в ткань из обычных клеток 4 белка. Каждый из них — это сигнал, включающий какие-то гены, запускающий сложный каскад реакций, которые и проводят к тому, что небольшая часть клеток в исходной ткани превращается в плюрипотентные. Это что-то вроде перезагрузки клеточного компьютера, но как именно это происходит, мы вообще говоря мало понимаем, тут еще работать и работать.

— А как же вы поняли, что именно эти 4 белка нужны?

— Можно сказать, методом тыка: у нас были 24 кандидата, которые, судя по тому, как они себя ведут в организме, могли подойти. Мы испытывали разные их сочетания на мышах, пока не нашли то сочетание четырех белков, которое работало.

— А обратный процесс? Как превратить ИПСК в нейрон или клетку крови?

— Мы использовали знания, накопленные эмбриологией, о том как эмбриональные клетки превращаются в клетки мозга или сердца. Мы пока умеем делать только несколько типов клеток — клетки легких, например, не умеем, клетки поджелудочной железы получаются незрелыми. Повторю: мы и десятой доли еще не знаем о том, как работает наше тело. У нас еще все впереди.

— Но если мы так мало знаем, как работают эти клетки... Вдруг они начнут размножаться как раковая опухоль?

— Во время производства ИПСК возникают мутации. Но мы используем новейшие технологии секвенирования, чтобы прочесть их геном, отследить вредные мутации и выбрать только безопасные клетки. Семь лет назад, когда мы начинали, риск таких мутаций был очень высок, но технология быстро совершенствуется, и риск мутаций уже намного меньше. Он еще не нулевой (да так и не бывает), но мы уже вплотную подошли к стадии клинических испытаний.

— Пересадкой ИПСК можно будет лечить болезни, исправлять мутации?

— Много лабораторий в мире работают над этим, но к клиническим испытаниям пока никто не приступил; зато уже были успешные эксперименты над животными. В теории, все должно сработать, но пока все это дойдет до клиник, еще 10 лет испытаний пройдет.

— А пока это единственный метод, позволяющий нам самим создавать нужные клетки?

— Нет, зато самый простой на сегодняшний день. Но все время появляется что-то новое — вероятно, на смену этому методу придут другие. В идеале, нам нужно научиться делать так, чтоб не мы пересаживали такие клетки в организм, а он сам их производил, лечил и омолаживал себя, когда нужно. Я мечтаю об этом.

Геном человека до сих пор не прочитан

Но все-таки огромное большинство людей, связанных с биоинформатикой, занимается не перепрограммированием геномов, а их расшифровкой и анализом. Об этом мы разговорились с Аллой Лапидус, замдиректора Лаборатории алгоритмической биологии Академического университета РАН, созданной в 2011 году в рамках программы мегагрантов.

— Наша задача — создание инструментов, то есть программ, с помощью которых врачи и биологи будут анализировать геном, — рассказывает Алла. — Они сейчас очень нужны, потому что количество производимых данных просто невероятно. Расшифровка только той небольшой части генома человека, которая кодирует белки, дает нам полтерабайта данных. И это только исходные данные, необходимые хоть для какого-то анализа реального пациента, — с ними еще ничего не делали. Представляете, какой нужен объем для хранения данных клиническому центру, в который приходят 3–4 тысячи пациентов?

В результате на сегодняшний день расшифровать ДНК куда дешевле, чем хранить информацию об этом. Не анализировать, а просто хранить! Поэтому IT-люди учатся новым методам сжатия, а главное — сборки информации.

— А сколько места занимает полная расшифровка всего генома?

— Вообще-то полностью геном человека до сих пор не прочитан*. Может быть, есть коммерческие расшифровки, которые не выложены в открытый доступ. В каждой хромосоме есть много идентичных областей. Букв генетического кода всего четыре, поэтому, если брать куски шифра небольшой длины, то просто в силу комбинаторики идентичных кусков будет много. А современные методы расшифровки основаны на чтении маленьких кусочков, с последующей реконструкцией всей хромосомы**. Из-за этого многие участки, там где много повторов, трудно восстановить. Года три назад Национальный институт здравоохранения США выделил три с половиной миллиона долларов на то, чтобы «закрыть дырки» в геноме человека. Я очень хорошо знаю женщину исключительного таланта, которая получила этот грант — если она не сделает, то не сделает никто. И вот пару месяцев назад вышла новая, официальная сборка человеческого генома, которую они выложили. И она все равно с дырками. Например, у хромосомы есть область в серединке, называется центромера, за которую при делении клетки клеточный аппарат «хватается» и растаскивает хромосомы в дочерние клетки. Эту область окружает огромное количество повторов. Очень много повторов и на концах хромосом — если эти концы будут торчать, их начнет съедать специальный фермент, поэтому края заворачиваются для защиты. Этот закрученный край, называющийся теломера***, тоже целиком состоит из повторов. Разобрать эти куски современными методами невозможно, поэтому они не расшифрованы. Постепенно методы позволяют читать разом все более длинные куски ДНК, — с развитием таких методов мы, наконец прочтем весь геном.

*, ** — Это утверждение может показаться парадоксальным в свете утверждений уже почти пятнадцатилетней давности, что он наконец-то прочитан: «Геном человека: как это было и как это будет» [10]. Понять, в чем тут дело, и какие подводные камни попадаются в решении как технических, так и концептуальных вопросов, можно из статьи «Код жизни: прочесть не значит понять» [11].

*** — Хромосомные кончики стоят того, чтобы их изучать. По крайней мере, за их исследования вручена Нобелевская премия [12]. — Ред.

— А как вообще расшифровывают генетический код?

— Вы многократно прочитываете, определяете структуру одного и того же куска ДНК* — многократно, чтобы быть уверенным в качестве данных. Для этого есть специальные приборы — секвенаторы. Они реконструируют маленькие кусочки ДНК — их надо собрать, чтобы реконструировать всю хромосому. Чтобы сделать такую сборку правильной последовательности из разных кусков данных, нужны серьезные математические методы. К сожалению, наша страна довольно сильно отстает в этой области, несмотря на то, что математика — это козырь России. Наших математиков очень уважают на международном рынке, считают, что математика у нас в где-то крови. Кстати, математик Павел Певзнер, директор нашей лаборатории и профессор Калифорнийского университета в Сан-Диего, недавно был признан в США человеком года в биоинформатике. Хотя основной массе сотрудников лаборатории нет еще и тридцати лет.

* — Одна из первых технологий определения последовательности нуклеотидов в молекулах нуклеиновых кислот «следующего поколения» (NextGen) получила название пиросеквенирование [13]; эта плеяда методик уже почти привела к снижению стоимости секвенирования индивидуального генома до «психологической» отметки в 1000 $ [14] и широко применяется в исследованиях [15], в том числе — секвенировании геномов единичных клеток [16]. — Ред.

— Какое-то время назад секвенаторы стали стремительно дешеветь, и все кинулись их покупать. Купили, поставили и развели руками: данных слишком много, а что с ними делать — непонятно. Проектов еще мало, народ не очень понимает, с чем это едят. Постепенно учатся, — с помощью биоинформатики появляется возможность что-то с этими данными делать. Сейчас такое же удешевление происходит и в области методов секвенирования белков. Для этого применяют масс-спектромеры — дорогие большие инструменты, которые тоже начали дешеветь, но в клинику не движутся, потому что врачам нечем обрабатывать эти данные. Есть кое-какие программы, созданные в университетах, но ими врачи пользоваться не могут — они слишком сложные и требуют специальных математических знаний. Мне один врач сказал: «ничего из этого я использовать не буду, пока у меня не будет кнопки, на которую я нажму, а в окошке появится идентификационный номер моего пациента и каким лекарством в какой дозировке его лечить».

Геном, транскриптом, протеом

— Анализа ДНК недостаточно, нужны еще и белки?

— Конечно, геномика позволяет узнать изменения и поломки в геноме, а значит, и причины связанных с ними болезней человека. Но отследив лишь изменения в геноме, вы мало что можете узнать. Ну, нашли вы точку в геноме, которая изменилась, но что эта мутация значит, каким образом она меняет работу организма? Подавляет она синтез белка или наоборот, интенсифицирует? Такие вещи нужно смотреть не на уровне ДНК, а на уровне РНК — потому что количество того белка, которое вырабатывается, определяется уровнем РНК. Знаете основную догму биологии — с ДНК считывается РНК, и уже с РНК — белок? Количество молекул РНК, произведенных каждым геном, показывает, насколько активен этот ген, сколько белка он производит. Информация обо всех РНК организма, показывающая, насколько активно работают его гены, называется транскриптомом*, это следующий этап анализа после генома.

* — В последнее десятилетие в биологию проникла, и, кажется, уже не собирается ее покидать, парадигма «больших данных», отлившаяся в здании наук о жизни в концепцию «-омик» (геномики, транскриптомики, протеомики, метаболомики и т.д.) — подхода, анализирующего явления молекулярной биологии на системном уровне с помощью современных высокопроизводительных экспериментов и биоинформатики, занимающейся обработкой этих данных: «„Омики“ — эпоха большой биологии» [17]. Биологи верят, что с помощью такого системного подхода можно будет не только приблизиться с разгадке тайны жизни, но и, например, вылечить рак [18]. Будем надеяться, что они не слишком оптимистичны. — Ред.

— И транскриптом тоже нужен не только ученым, но и врачам?

— На основании данных транскриптомики врач может выписать лекарство, восстанавливающее уровень вещества, если он упал из-за мутации, или наоборот, тормозящее производство того вещества, если ген стал слишком активен, — например щитовидная железа при разных типах нарушений может производить слишком много или слишком мало своего гормона.

А третий этап анализа — это протеом, то есть совокупность всех белков, присутствующих в организме. Нужно посмотреть, где и в каких количествах эти белки находятся — там, где им положено, или в местах, где их никто не ждет и они никому не нужны.

— То есть, помимо данных расшифровки генома, которые и так хранить негде, современным клиникам нужны еще данные о транскриптоме и протеоме?

— Именно. Каждый из этапов дает очень много данных, и нет возможности сложить все эти данные вместе и хранить их. Это сейчас существенно тормозит развитие персонализированной медицины. Нужен комплексный подход в анализе человеческого организма, и нужны компьютерные продукты, которые помогут этот анализ проводить. Поэтому мы, биологи, вступили в естественный альянс с математиками, научились слушать IT-людей, а они — нас*. Для начала мы занялись сборкой геномов микроорганизмов и выпустили программу для их анализа. Этому инструменту два года, и его уже используют тысячи лабораторий по всему миру.

* — Видимо, этот альянс установился надолго. В науке уже довольно прочно укоренилось понятие «сухой биологии» [19], фактически обозначающее биоинформатику, которая не занимается получением данных самостоятельно (это происходит в «мокрых» экспериментальных лабораториях), а анализирует данные, получаемые другими исследователями во все ускоряющемся темпе. В этой связи встает также вопрос стандартизации публикации экспериментальных данных в машиночитаемой форме и принцип открытого доступа к такого рода информации. Ну а биоинформатика уже de facto стала одной из популярных биологических специальностей, и в России с ней, к слову сказать, не так уж и плохо: «Я б в биоинформатики пошёл, пусть меня научат!» [20]. — Ред.

— Для микроорганизмов вроде кишечной палочки?

— Да, для любых бактерий. С кишечной палочкой все просто: сливаете в банку разные полезные для нее вещества, сажаете ее туда и утром у вас нарастает много материала. А многие микроорганизмы, которые живут в нашем теле некультивируемые: их невозможно вырастить в лаборатории. Так вот таких организмов подавляющее большинство — на сегодня мы умеем выращивать не больше 5–6% микроорганизмов. И вот нам надо просеквенировать сразу всю эту кучу живущих внутри нас микроорганизмов — это называется метагеномика, — и возникает задача вычленить каждого «жителя» в этом сообществе. Современные технологии позволяют растащить все эти клетки, оставив одну-единственную. Но в одной клетке очень мало ДНК — нужно ее как-то размножить, сделать так, чтобы ее стало больше, а потом секвенировать и собрать все нужные данные.

— Для чего это делают?

— Допустим, вам сделали операцию, а потом возник воспалительный процесс, или вы неправильно питаетесь, и начинается заболевание из-за изменений микроорганизмов желудочно-кишечного тракта. Или вот есть дети с аутизмом — уже показано, что население их желудочно-кишечного тракта сильно отличается от нормы: у всех аутичных детей есть проблемы с желудком. Изучают, что здесь первично, а что вторично — болезнь вызывает эти изменения или они становятся причиной болезни (например, если какой-то микроорганизм выделяет токсины, влияющие на мозг). Ведь есть болезни, которые вызывает микрофлора, а есть такие, которые приводят к изменениям микрофлоры, и по этим изменениям их можно диагностировать.

—А чем вы занимаетесь сейчас?

— Недавно мы создали инструмент для Лаборатории эволюционной геномики Алексея Кондрашова в МГУ, тоже выигравшей мегагрант. У них возникла задача делать сборку генома для диплоидных грибов, — то есть для таких, у которых в клетках по два ядра и двойной набор хромосом. Им тоже нечем было обрабатывать данные. Недавно мы представляли сделанный для них инструмент на конференции в США.

Думаем и над медицинскими приложениями. Обычно для медицинских целей нам не нужно собирать весь геном человека. Нас интересует какая-то область генома — одной точечной мутации чаще всего не достаточно, чтобы объяснить заболевание. Берутся определенные данные — исходя из области вашего интереса, — и программа осуществляет локальную сборку участков генома.

Все время возникают новые задачи, связанные с необходимостью секвенировать геномы различных организмов — для разных грибов или животных нужны свои подходы. Но в итоге мы хотим сделать универсальный инструмент, подходящий для любых организмов, или близкий к этому.

Клетка вместо атома

Оказывается, в МФТИ, цитадели российской физики, теперь тоже вовсю занимаются биологией: в прошлом году был создан факультет биологической и медицинской физики, заработали геномный центр и центр клеточных технологий, заканчивается строительства корпуса для биофармкластера «Северный», открыт Центр живых систем МФТИ, который будет внедрять достижения физиков практику биологов и медиков. На конференции ФизтехБио-2014, тоже не обошедшейся без пары нобелевских лауреатов, мы встречаем её организатора, руководителя Центра живых систем профессора Андрея Иващенко.

— Вы же Физтех, а не Биотех! Почему именно живые системы оказались сейчас для вас самым важным делом?

— Просто 21 век — это век изучения живых систем, это мировой мегатренд. Посмотрите публикации Массачусетского технологического института, ведущего физического университета мира, — половина будет в области медицины и живых систем. В 20-м веке у людей в основном получалось изучать неживую природу, а в 21 веке наука развилась достаточно для того, чтобы как следует заняться живой природой. Поэтому то место, которое в 20-м веке занимала физика, теперь заняла биология, да и вообще это разделение больше не актуально. Честно говоря, я уже устал объяснять, почему в физтехе занимаются таблетками. «Вот таблеточники, во что вы превращаете физтех! Вы же физики, вы должны делать ракеты и ядерные бомбы!», — говорят нам. Боюсь признаться, что мы еще собираемся заняться аквакультурой и агротехнологиями — там ведь тоже расцвет биотеха. Я думаю, лет через 20 большая часть сельского хозяйства будет в океане — земли же не хватает, а в океане много воды, много планктона, биомассы намного больше, чем на поверхности земли. Любые белки научатся выращивать в океане — это гораздо дешевле, эффективней и экологичней.

— Но мы-то традиционно сильны в физике и математике! Не получится ли как с конверсией при Горбачеве, когда вместо ракет стали выпускать кастрюли?

— Ракеты мы делаем, просто они отошли на второе место. Физика сейчас очень нужна как фундамент, инструмент химии и биологии. Посмотрите, самые прорывные медицинские центры в мире выросли из естественно-научных университетов. Клиника Джона Хопкинса — тот же физтех, который вырастил у себя медицинский центр. И мы на физтехе собираемся сделать университетский исследовательский госпиталь, который будет обеспечивать трансляцию научных достижений в практику. И кстати, лучший ответ на ваш вопрос о том, что делают физики и математики в биологии — это нобелевский лауреат Майкл Левитт, один из отцов биоинформатики. Он физик по образованию, а Нобелевскую премию в прошлом году получил* за работу по моделированию молекул белка, которую Нобелевский комитет долго не мог понять, к чему относить — к химии, биологии или математике.

* — Прочитать об этом можно в статье «„Виртуальная“ Нобелевская премия по химии (2013)» [21], только нужно иметь в виду, что речь там идет о другой ветви биоинформатики — о структурном моделировании биологических молекул, а не об анализе генетических «текстов». — Ред.

Биоинформатика в четырехмерном мире

Несмотря на зубодробительные подробности, касающиеся его ученых занятий, Майкл Левитт оказывается очень милым, искренним и расположенным к общению человеком.

— Как получилось, что именно вы получили Нобелевскую премию?

— Ответ на этот вопрос очень простой: мне просто нравилось играться с компьютером. Но в конце 60-х персональных компьютеров не было, и вообще компьютеры были большой редкостью. И я выбрал профессию и лабораторию так, чтобы можно было вволю наиграться.

— И в итоге стали отцом биоинформатики...

— На самом деле, настоящий отец биоинформатики — покойный уже иммунолог Элвин Кабат, который в 70-х написал первые книги о ней.

— А что представляет из себя биоинформатика сегодня?

— Книга жизни написана на языке информатики, и надо заметить, мы пока еще весьма далеки от понимания этой книги. Но сейчас многие ученые вносят свой вклад в её понимание — и как же это интересно! Методы анализа информации в ДНК в общем те же, что и при анализе документов или книг. Вот вы пишите что-нибудь в Ворде, а потом нажимаете кнопку, которая позволяет отследить все внесенные в текст изменения. Ворд запускает алгоритм сравнения нового текста со старым, — тот же алгоритм, который используется для сравнения двух цепочек ДНК. Такие алгоритмы имеют универсальный характер, поэтому можно сказать, что Google, создавая алгоритмы работы с большими данными, больше всех на сегодняшний день сделал для биоинформатики.

Но сейчас количество данных растет даже быстрее, чем способности наших программ обрабатывать их. Это связано с заблуждением многих работающих в этой области людей — о том, что можно просто взять данные и начать их анализировать, не имея никакой модели того объекта или процесса, который породил эти данные. Ну, например, сейчас много разговоров об анализе больших данных в шоппинге — из данных о том, кто что покупает, пытаются делать выводы о том, кто что будет покупать в перспективе. Но тут недостаточно корреляций между цепочками цифр — нужно понять психологию покупателей, построить модель поведения людей. И я думаю, что хороший анализ данных всегда требует создания такой модели поведения изучаемого объекта. Это сложно, и недостаток хороших моделей биологических объектов — очень важная проблема биоинформатики сегодня.

— Биоинформатика — это ведь не только анализ генома?

— Конечно, но сейчас, когда говорят о биоинформатике, чаще всего имеют в виду анализ расшифровки ДНК, то есть длинной одномерной цепочки символов. А я работал совсем в другой области — моделируя большие молекулы, я имел дело с трехмерным пространством, даже с четырехмерным, если учитывать изменения этих молекул во времени*. Это область, кстати, более старая — первые работы в ней появились в начале 50-х, а первая расшифровка ДНК — только к 1985. Последние 15 лет именно здесь происходит взрыв исследований, поэтому она у всех на слуху. Но я думаю, самое интересное в биоинформатике будет связано с моделированием жизни организма как целого — то есть таких процессов как старение или эволюция.

* — Левитт имеет в виду здесь такие алгоритмы как молекулярная динамика («Молекулярная динамика биомолекул. Часть I. История полувековой давности» [22]), одним из основным идеологов которых он и является. — Ред.

— А область 3D-моделирования чем-то напоминает архитектуру, она очень сложна. Легко сравнивать две цепочки символов, и гораздо труднее — два трехмерных объекта. Отличия часто непросто заметить — они, например, похожи на отличия ваших рук от их изображения в зеркале. Вы ведь понимаете, что предмет и его отражение — разные?

Чтобы измерить сходство двух пространственных объектов, нужно сначала построить физические модели этих объектов. Поэтому многим из тех, кто занимается большими данными, очень не хватает понимания реальных объектов, с которыми они имеют дело. Но мыслить о четырехмерном мире гораздо труднее, чем об одномерном.

Любят ли биологи математиков?

— Вы — один из первых, кто пришел в биологию из физики и математики. Сейчас ведь многие так поступают. Не возникает у них трений или непонимания с биологами?

— Это давно происходит — еще в 50-х люди из физики и математики начали приходить в биологию. Уже Джон фон Нейман, математик, стоявший у истоков информатики, очень серьезно интересовался биологией. Я не вижу никакой напряженности между математиками и биологами, но стиль мышления у них действительно разный.

Математическое мышление опирается на небольшое число исходных принципов, аксиом, а мышление биологов опирается на историю. Биология — это же история того, что случилось с генетической информацией на протяжении последних четырех миллиардов лет. Это делает математический и биологический подходы очень разными. Физикам и в голову не может прийти, что скорость света могла меняться с возрастом вселенной, они привыкли к константам. А биология — это история, здесь все меняется со временем.

И еще здесь велика роль случайности — если вернуться в прошлое на машине времени и все повторить, то эта история станет совсем другой из-за множества случайностей. Мы пока очень мало знаем о вероятностных процессах и случайности... Мне кажется в школах нужно меньше изучать все это сложение дробей и прочую теорию цифр, и намного больше — основы статистики: это гораздо важнее! Сегодня для большинства людей вероятность один на тысячу и один на миллион — это примерно одно и то же. Но ведь разница огромна — это как иметь тысячу долларов или миллион долларов. Мне кажется серьезной проблемой, что люди этого не понимают.

В общем, биологам и математикам есть чему поучиться друг у друга, и это здорово! Мне так нравится, кстати, что сейчас столь легко стало учиться благодаря интернету. Вот недавно я заинтересовался теорией графов — и сначала нашел программы, которые мне всё показали, а потом и специалистов с которыми смог обсудить волновавшие меня вопросы. Так прекрасно понять что-то, чего ты раньше не понимал!..

Майкл Левитт, лауреат Нобелевской премии по химии 2013 года. Фото: Алексей Паевский.

— Мне сказали, что «биология — это физика сегодня» — в смысле центральной и объединяющей роли, которую стала играть биология в науке...

— Биология ведь так прекрасна и полезна! Как мы видим, слышим, думаем, болеем и выздоравливаем — все это биология, и нет науки полезней. И что важно, биология имеет дело с необычайно сложными процессами — допустим, биологические процессы проходят на наноуровне, более мелком, чем тот, с которым имеют дело нано-инженеры. Или вот ученые никак не научатся синтезировать какую-то молекулу, а обычное растение или даже бактерия — умеют! Способности растений к синтезу разных молекул просто поражают меня.

Я тоже думаю, что биология сегодня — это фокус, ключевая область науки. И биология сегодня собирает под своим крылом специалистов из самых разных научных дисциплин. Да и вообще это деление на математику, физику, биологию устарело, — думаю, оно изменится. Оно словно создано ради самозащиты, чтоб отгородиться от остальных — если я математик, то я не должен прислушиваться к химикам. Это же безумие! Это какой-то вид национализма, словно обращать внимание только на высказывания людей с определенным цветом кожи. Специалист в любой области может дать для решения научной проблемы что-то ценное — это как в жизни, каждый в итоге чем-то оказывается полезен. В моей группе работают физики, химики, биологи, математики, компьютерщики — и когда они вместе работают над чем-то, все хотят учиться друг у друга.

— А над чем ваша группа сейчас работает?

— Над несколькими предельно сложными, почти нерешаемыми проблемами — я люблю такие. Например, мы собираем информацию обо всех расшифрованных геномах, всех видах, живущих на планете. Сейчас у нас есть около 20 тысяч геномов. Уже известно около 500 общих для них функций, которые выполняют разные участки этих геномов — и мы пытаемся сравнивать их.

Знаете, эта нобелевская премия — странная штука. Вы вдруг получаете признание не за то, чем занимаетесь, а за то, что делали давным-давно. Поэтому она не приносит так уж много радости — ведь я живу не прошлым, а будущим, и верю, что самое интересное — впереди. Что может быть хуже, чем сказать: «ну все, я закончил, пора и на покой».

Первоначально статья была опубликована в журнале «Русский Репортер» [23].

Литература

  1. Обо всех РНК на свете, больших и малых;
  2. Нобелевская премия по физиологии и медицине (2012): индуцированные стволовые клетки;
  3. Была клетка простая, стала стволовая;
  4. Ствол и ветки: стволовые клетки;
  5. Развитие и эпигенетика, или история о минотавре;
  6. Пилюли для эпигенома;
  7. Флуоресцентные белки: разнообразнее, чем вы думали!;
  8. Флуоресцирующая Нобелевская премия по химии;
  9. Бактерии для водородной энергетики;
  10. Геном человека: как это было и как это будет;
  11. Код жизни: прочесть не значит понять;
  12. «Нестареющая» Нобелевская премия: в 2009 году отмечены работы по теломерам и теломеразе;
  13. 454-секвенирование (высокопроизводительное пиросеквенирование ДНК);
  14. Технология: 1,000 $ за геном;
  15. Огурцы-убийцы, или как встретились Джим Уотсон и Гордон Мур;
  16. Секвенирование единичных клеток (версия — Metazoa);
  17. «Омики» – эпоха большой биологии;
  18. Биоинформатика: Большие БД против «большого Р»;
  19. Вычислительное будущее биологии;
  20. Я б в биоинформатики пошёл, пусть меня научат!;
  21. «Виртуальная» Нобелевская премия по химии (2013);
  22. Молекулярная динамика биомолекул. Часть I. История полувековой давности;
  23. Русский Репортер: «Жизнь — это компьютер»..

Комментарии

Вас также может заинтересовать